DC Field | Value | Language |
dc.contributor.author | Mekonnen, Kalkidan | - |
dc.date.accessioned | 2022-04-26T12:05:48Z | - |
dc.date.available | 2022-04-26T12:05:48Z | - |
dc.date.issued | 2022-02 | - |
dc.identifier.uri | . | - |
dc.identifier.uri | http://hdl.handle.net/123456789/6927 | - |
dc.description.abstract | Today, digital reviews play a pivotal role in enhancing global communications among consumers
and influencing consumer buying patterns. The availability of technology and infrastructure
create opportunities for citizens to publicly voice their opinions over social media. Business
Company uses this opportunity to improve the quality of their product and the efficiency of their
company. Companies don‟t yet have an effective way to make sense of customer opinions given
on the product. Now a day‟s huge amount of product reviews are posted on the Web. Such a
product reviews are a very important source of information for business companies to know
about their product acceptance by their customer. Manual analysis of these reviews is very
difficult because of the increase in the numbers of reviews on products day after day. Techno
Company creates a Facebook page which helps consumers to share their experience and provide
real insights about the performance of the product to future buyers. In order to extract valuable
insights from a large set of reviews, classification of reviews and rating products into 1for best
product which is highly accepted by their customer, 2 for good product and 3 for products
having problem which customers is not happy to buy it.is. Product review Analysis is a
computational study to extract subjective information from the text.
This paper proposes a customer opinion analysis model to classify product reviews and rating the
product best, good and bad based on the customer feedback about the product. It applies six
popular machine learning classifiers namely: Support Vector Machine (SVM), BOOSTING,
SLDA, NNETWOR, TREE and BAGGING with the aim to come up with the most efficient
classifier. The dataset used consists of 2000 reviews about mobile phone products, collected
from Tecno Facebook page. In order to evaluate the six classifiers, we used 10fold cross
validation, recall, precision, F1-mesaure and accuracy to measure the performance of each
algorithm. The results showed that SVM and BOOSTING outperformed the other classifiers in
term of accuracy in all experiments. Decision Tree algorithm gave the lowest results across all
experiments in terms of accuracy. | en_US |
dc.language.iso | en | en_US |
dc.publisher | ST. MARY’S UNIVERSITY | en_US |
dc.subject | opinions, Opinion Mining, Review, Sentence Level, Document Level, Feature Level, Classification, Extraction, Machine learning algorithms, Determination | en_US |
dc.title | IMPROVING CUSTOMER SERVICE USING PUBLIC OPINION MINING | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Master of computer science
|