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ABSTRACT

Lung cancer is a major cause of cancer-related deaths, often due to late diagnosis. Early
detection is vital for better outcomes and lower mortality rates. Traditional methods like
chest X-rays are not sensitive enough to spot small, early-stage nodules, highlighting the
need for advanced imaging and classification techniques to identify malignant nodules early
on. This study investigates the application of interpretable deep learning models for
classifying lung nodules in CT scans as benign or malignant, aiding in the early detection of
lung cancer. We leverage 3D Convolutional Neural Networks (3D CNNSs) trained on the
LUNAZ22 ISMI dataset, comprising 1,176 lung nodules with a collection of lung nodule
annotations from anonymized CT scans. In the preprocessing stage, we standardized pixel
intensity values and applied augmentation techniques such as rotation, scaling, and flipping
to enhance the diversity of the training data. These steps were implemented using Python
packages, including SciPy for augmentation and NumPy for array operations. We compared
four 3D CNN models with different architectures, including a baseline model, a 3D AlexNet-
based model, a proposed 3D CNN model, and a 3D CNN model integrated with the
Convolutional Block Attention Module (CBAM). The CBAM module enhances feature
extraction by applying attention mechanisms to the most informative features. Our proposed
3D CNN with CBAM achieved the highest performance, with an accuracy of 94.06%, AUC
of 98.84%, and F1-Score of 95.56%. To ensure model transparency and facilitate clinical
adoption, we employed 3D Grad-CAM to generate visual explanations of the model's
predictions. This technique provides insights into the regions of the lung nodule that most
influence the classification decision. Despite these promising results, the study has several
limitations. The dataset used, although robust, is limited in size and diversity, potentially
impacting generalizability to broader populations. Additionally, our models were trained
and evaluated under controlled conditions, which may not fully replicate real-world clinical
environments. Future work should focus on validating these models in larger, more diverse
datasets and deploying them in prospective clinical studies to assess their practical impact.
Integration with existing diagnostic workflows and evaluating cost-effectiveness are also

critical steps toward clinical adoption.

Keywords: 3D Convolutional Neural Network (3D CNN), Explainable Al (XAl), 3D
Gradient Class Activation Maps (3D Grad-CAM), Convolutional Block Attention Module
(CBAM), LUNA22 ISMI
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CHAPTER ONE
INTRODUCTION

1.1 Background of the Study

Cancer is a general term that refers to many diseases that arise in any body organ. Malignant
neoplasm and neoplasm are two other terms. One distinguishing feature of cancer is the rapid
growth of tumor cells that exceed their normal size and can spread to nearby parts of the
body and metastasize to secondary organs; metastasis is this latter phenomenon. Cancer cells
tend to travel to the rest of the body, where they begin growing and replacing normal tissue.
This is called metastasis, which occurs when the cancer cells travel into our body's blood or
lymphatic system. But when cells from a cancer like breast cancer move to a different organ
like the liver, the cancer is still breast cancer and not liver cancer. The primary cause of

cancer mortality is widespread metastasis. (National Cancer Institute, 2021).

The top cause of mortality globally is cancer, which resulted in nearly 10 million deaths in
2020, nearly one in every six. Breast, lung, colon, rectum, and prostate cancers are the most
common. (WHO, 2022). Based on the World Health Organization (WHO), in May 2020,
(new cancer cases) breast (2.26 million cases), lung (2.21 million cases), colon and rectum
(1.93 million cases), prostate (1.41 million cases), skin (non-melanoma) (1.20 million cases),
and stomach (1.09 million cases). And in 2020, the top five causes of cancer death were lung
(1.80 million), colon and rectum (916 000), liver (830 000), stomach (769 000), and breast
(685 000 deaths) (Ferlay et al., 2022).

In the following two decades, the cancer burden will be raised by nearly 60% again, and it
will challenge healthcare systems, people, and communities even further. In the year 2040,
about 30 million new cancer diagnoses are expected all over the world, with increases
expected to occur most in low- and middle-income nations (American Cancer Society,
2007).

Most cancers start as tumors. Some cancers, like leukemia, do not form tumors. These cancer
cells invade the blood and blood-forming organs and move into other tissues where they
grow. Remember that not all tumors are cancer. A benign (non-cancer) tumor does not spread
to other parts of the body and, with very rare exceptions, is not life-threatening. (National
Cancer Institute, 2021).



Cancers are unique diseases, for example, lung cancer and breast cancer are very dissimilar.
They grow at a different rate and are handled differently. For this reason, cancer patients
need treatment that is aimed at their particular type of cancer. (National Cancer Institute,
2021)

The International Agency for Research on Cancer (IARC), a WHO department, has a
classification of carcinogenic agents. IARC estimates lung cancer was the world's most
frequent cancer until 2020 when breast cancers slightly exceeded lung cancers. Lung cancer
has been and still remains the global leader in cancer-related deaths. As is evident above, in
the year 2020, almost 1.8 million lost their lives due to lung cancer, almost twice the number
of deaths due to cancer caused by colorectal cancer, which is the second most frequent cause
of cancer death. The major causative factor for developing lung cancer is stated by IARC to
be tobacco smoking. Other frequent causes are air pollution outdoors and indoors, diesel

engine exhaust, welding fume, and asbestos.

1.1.1 Lung Cancer

Lung cancer primarily develops in the lungs and is generally divided into two main types:
Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC). In some rare
cases, lung cancer may display features of both SCLC and NSCLC, which is referred to as
combined small cell/large cell carcinoma (American Cancer Society, 2007). Figure 1.1
illustrates the various parts of the lung.

Lymph node- = e Trachea

— — Bronchi
Right lung: !

Upper lobe Left lung:

Upper lobe

Middle lobe

-Lower lobe
Lower lobe— \

Diaphragm /

Figure 1.1 is an illustration of the respiratory system’s anatomy
(https://www.cancer.gov/types/lung/patient/lung-prevention-pdq).



Lung cancer is a type of cancer that starts in the lungs. There are two major types of lung
cancer: Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC). A

third less common type of lung cancer is called Carcinoid.

There are two forms of SCLC: Small Cell Carcinoma and Mixed Small Cell/Large Cell
Cancer or Combined Small Cell Lung Cancer. Small cell lung cancer is classified by the
types of cells in the cancer and how the cells appear when viewed with a microscope. Small-
cell lung cancer is almost always associated with cigarette smoking. Small-cell lung cancer

is usually treated with chemotherapy. (National Cancer Institute, 2021).

NSCLC is more common. It occurs in about 80 percent of lung cancer. This type of cancer
develops and spreads to the rest of the body more slowly than small-cell lung cancer. There
are three different types of NSCLC. The first is Adenocarcinoma: - which is a form of non-
small cell lung cancer that most often occurs in the outer part of the lung. It occurs in
epithelial tissue cells, which form the lining of the body surfaces and cavities and glands.
The second one is Squamous cell carcinoma: A form of non-small cell lung cancer most
typically found in the middle part of the lung along an air tube (bronchus). In addition, there
exists large cell carcinoma: Non-small cell lung cancer which might occur in any part of the
lung and tends to develop and spread faster compared to Squamous cell carcinoma or
Adenocarcinoma. (National Cancer Institute, 2021). Carcinoid refers to a type of slow-
growing tumor that originates from neuroendocrine cells, which are specialized cells found
throughout the body and involved in hormone production. These tumors are part of a broader
category called neuroendocrine tumors (NETSs). While carcinoids can develop in various
locations, they are most commonly found in the gastrointestinal (Gl) tract, lungs, or, less

frequently, in other organs like the pancreas or ovaries.

Lung Nodules: A lung nodule (or mass) is an abnormally small area that can sometimes be
found on a CT chest scan. They are done for many reasons, such as part of lung cancer
screening or as a screening of the lungs when you have a symptom. The majority of lung
nodules found ona CT scan are not cancerous. They are more often caused by past infections,
scar tissue, or other causes. Tests often must verify that a nodule is not cancer, though. In
addition, LDCT Scan can also show the size, shape, and location of any lung cancers and
can find enlarged lymph nodes that might have cancer that has spread.



1.1.2 Lung Cancer Screening

The prognosis for most cancers, including cancer of the lungs, is much better if the illness
can be detected and treated early. Lung cancer is detectable at an early stage by the use of
screening methods, which involve the application of diagnostic tools or tests to determine
the illness in individuals who have not yet started developing any symptoms. However, it
must be stated that most lung cancers are typically diagnosed after symptoms arise.
Therefore, a referral for a screening test is not always an indication that a doctor suspects
cancer. A lung cancer diagnosis is established by examining a specimen of lung tissue in the
lab (National Cancer Institute, 2021).

The three most frequently used screening tests for the early identification of lung cancer are
Low-dose computed tomography, chest X-ray, and Sputum cytology (National Cancer
Institute et al., 2021). Low-dose computed tomography (LDCT) or low-dose CT scan is an
imaging procedure that captures a series of highly accurate images of body tissues employing
a very low-level radiating x-ray machine, which is connected to a computer. In this
procedure, three-dimensional pictures of organs and tissues are created by capturing x-rays
from many angles. LDCT is recommended to be applied as a screening test for adults at risk
of lung cancer, particularly those with a history of smoking and increasing age, since it can
identify early symptoms of the disease easily. (National Cancer Institute, 2021).

A chest radiograph, or a chest X-ray, is among the most prevalent imaging studies applied
that employs an intense beam of radiation to form images of bones and organs contained
within the thoracic cavity. These include such vital structures as the lungs, heart, vessels, air
passages, and spinal and rib bones. The process is not too painful and takes only a few
seconds, making chest X-rays a useful resource for initial assessment and regular monitoring

of several chest-related disorders.

Sputum cytology is a laboratory test in which cells that have been extracted from sputum,
'the mucus secreted by the lungs,' are examined under a microscope. The purpose of this test
is to find abnormal cells, specifically those which can be an indicator of lung cancer. Figure

1.2 depicts examples of lung cancer screening methods.



Chest X-ray

LDCT-Scans Chest X-rays Sputum cytology.

Figure 2.1 Examples of Lung cancer screening methods
https://www.google.com/ (different LDCT scans and chest X-rays and sputum cytology).

Also, there are Positron Emission Tomography (PET Scans) and Magnetic Resonance
Imaging (MRI Scans) (American Cancer Society., 2007). Regular chest X-rays have also
been researched as a lung cancer screening test for individuals at higher risk, but the results
have not indicated that the majority of patients benefit from the test, and thus it is not
suggested for lung cancer screening. Studies using LDCT scans in individuals at greater risk
of lung cancer have established that, in contrast to chest X-rays, yearly LDCT scans to screen
individuals at high risk of lung cancer can preserve lives. Getting yearly lung cancer
screening prior to any symptoms develop reduces these individuals' risk of dying from lung
cancer (Mayekar, Pattewar, Patil, & Dhruv, 2022).

The final goal of lung cancer screening and detection methods is the identification of lung
nodules, or small abnormal locations that are detectable on CT scans. The majority of lung
nodules are benign and may be due to conditions such as scar tissue or a history of infections,
but further evaluation is usually required to exclude malignancy. Low-dose computed
tomography (LDCT) scans play an important role here since they not only detect lung
nodules but also provide vital information regarding enlarged lymph nodes, which can be
indicative of cancer spread, and information on tumor characteristics, including size, shape,
and location. All this information is very important in terms of proper diagnosis and
treatment planning. By effectively identifying lung nodules and offering precise information
on potential tumors, LDCT scans play a significant role in the early detection of lung cancer

and result in improved patient outcomes.


https://www.google.com/%20(different

In this study, an attempt is made to apply computer vision and deep learning to lung cancer
detection.

1.1.3 Research Background

Artificial intelligence (Al) can enable computers to be able to see and understand their own
visual environment in a discipline known as computer vision (CV). Computer vision,
through specific application of deep learning, utilizes artificial neural networks as a method
of "learning” from large data sets. These networks are modeled after the decision-making
mechanisms of the brain, thus enabling them to analyze images and recognize specific

details, making them extremely useful tools for identifying lung cancer at an early stage.

The transformative potential of artificial intelligence, in particular deep learning-based
computer vision, is vast across many domains, including medicine, where it can possibly

enhance diagnostic precision and patient results.

Though Al won't replace healthcare workers, it's transforming the field with personalized
care, outcome prediction, and better diagnostics. Analysis of real-time data can assist in

disease treatment, cancer risk analysis, and even drug recommendations (Panesar, 2019)

As Al systems increase in complexity, as represented by Deep Neural Networks, it
becomes more difficult to understand the reasoning behind their decisions. While earlier
generations of Al systems are easier to interpret, modern Al models are increasingly

viewed as more opaque (Barredo Arrieta et al., 2020).

Deep Learning (DL) models, such as Deep Neural Networks (DNNSs), have proven to be
very effective due to their massive size and advanced learning techniques. However, this
complexity, with millions of parameters and hundreds of layers, makes DNNs difficult to

understand, often referred to as "black box™ models (Barredo Arrieta et al., 2020).

To effectively implement machine learning (ML) and deep learning (DL) models,
particularly in the healthcare industry, it is essential to address certain questions: “Are we
aware of the factors that influence the model's outputs?” and “Do we understand the
scenarios in which the model performs well and those in which it does not?”” A new subfield
of artificial intelligence, known as Explainable Al (XAl), focuses on addressing these

inquiries and transforming black box models into more transparent ones. This field



encompasses a wide range of applications across all areas of Al. Figure 1.3 illustrates the
breadth of XAl's scope.

Figure 2.2 Scope of XAl (Conor O’Sullivan, n.d.).

The goal of Explainable Al (XAl), also referred to as interpretable machine learning (IML),
is to develop machine learning models that are understandable to humans. This area of study
encompasses both theoretical research and a variety of tools and methods designed for this
purpose. It includes strategies for deciphering black box models as well as modeling
techniques aimed at producing models that are easier to interpret. As noted by Conor
O’Sullivan, “XAI can be viewed as both the process of interpreting models and enhancing

their interpretability.”

Computer vision (CV) empowers machines to analyze and interpret visual information from
their environment. By leveraging deep learning techniques, particularly neural networks,
computer vision systems can "learn™ from extensive datasets to identify patterns and features
in images. These systems emulate the decision-making processes of the human brain,
enabling them to excel in tasks such as image analysis, object recognition, and feature

extraction.

In healthcare, the integration of computer vision with deep learning holds transformative
potential, especially for enhancing diagnostic accuracy and improving patient outcomes. For
instance, the ability of deep learning models to process vast quantities of medical imaging
data can significantly advance early disease detection. One prominent application is in the
early detection of lung cancer, where computer vision enables the precise classification of
lung nodules as benign or malignant. By analyzing CT scan data and identifying critical
features, these systems bridge the gap left by traditional diagnostic tools like chest X-rays,
which often fail to detect small, early-stage nodules.



When paired with explainable Al (XAl) techniques, computer vision can ensure
transparency and trustworthiness in its applications. It can provide healthcare professionals

with insights into model predictions and facilitate adoption in clinical settings.

1.2 Motivation of the Study

Lung cancer, which affects both men and women, is the foremost cause of cancer-related
fatalities worldwide. According to recent data from the International Agency for Research
on Cancer (IARC), approximately 19 million new cancer cases and 9 million deaths due to
cancer were recorded globally in 2022 (WHO, 2022). Cancer continues to be one of the
leading causes of death around the world, with lung cancer being the most common type.

Figure 1.4 presents the incidence rates for both sexes in panels (a) and (b), while panels (c)

and (d) illustrate the mortality rates (IARC, 2022). - Lusg
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Figure 2.3 DataViz for Cancer Incidence and Mortality (IARC, 2022)

Many countries expect a rise in lung cancer cases and deaths by 2050, making it a major
global health issue. As the nature of lung cancer changes, it's crucial to reallocate resources

and improve prevention strategies to reduce the global burden of lung cancer in the future



(Luo et al., 2023). Figure 1.5 illustrates the projected number of new cases and deaths from
2022 to 2050, categorized by gender and age group, for cancers of the trachea, bronchus, and
lung (Ferlay J et al., 2024) (IARC, 2024).
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Figure 2.4 Projected number of new cases and mortality for trachea, bronchus, and lung
cancers.
Even though treatments are available, many lung cancer cases are diagnosed at advanced
stages. Early detection through screening programs for high-risk individuals is key to
improving survival rates. Low-dose CT scans have been shown to significantly reduce lung
cancer mortality in both current and former heavy smokers. Annual screening for three years

is more effective than chest X-rays for early detection.

While LDCT scans are effective in detecting early-stage lung cancer, they also carry certain
risks. One significant concern is the potential for false positives, where an individual is
incorrectly identified as having cancer despite being cancer-free. Such errors can lead to
unnecessary and invasive procedures. These issues often arise due to mistakes made by
radiologists during the screening process. Over the past three decades, the workload for
radiologists has increased substantially (Markoti¢ et al., 2021), leading to burnout as they

face overwhelming amounts of critical data with limited time to analyze it.

The data captured by medical imaging equipment has detailed information and has been used
for Al models as Al is data-driven programming. If used wisely with advanced techniques
in the ML and DL, it can assist the radiologists by minimizing the risks related to screening

of lung cancer at an early stage.



As our models become more complex, they become opaque to the domain experts, in our
case, to the medical doctors. Using XAl techniques, we can make our Al models more

interpretable and transparent to clinicians.

1.3 Statement of the Problem

Lung cancer's high mortality rate is largely due to late-stage diagnosis when the disease is
often beyond effective treatment. Early detection of small, localized nodules significantly
improves survival rates, but traditional methods like chest X-rays lack the sensitivity to
identify subtle abnormalities. Low-dose CT (LDCT) scans have proven more effective for
early detection; however, they require highly skilled radiologists, creating challenges in

managing the increased workload and data volume.

Deep learning models have shown promise in lung cancer diagnosis by identifying patterns
in large datasets that are difficult for humans to detect. Despite their success, these models
face challenges in clinical integration due to limited interpretability. Their "black box" nature
makes it difficult for medical professionals to understand the reasoning behind predictions,
raising concerns about transparency, patient safety, and trust in Al-driven tools. Studies such
as (Shen et al., 2017), (Esteva et al., 2017), and (Arrieta et al., 2020) have highlighted the

potential of deep learning in cancer detection but emphasize the need for explainable models.

While models like those in (Essaf et al., 2020) have demonstrated high accuracy in lung
cancer detection, the lack of interpretability undermines their clinical utility. To ensure
reliability and trustworthiness, it is crucial to enhance model transparency and
Explainability, enabling healthcare providers to understand and validate Al predictions. This
research aims to develop a deep learning-based early lung cancer detection model that

integrates interpretability, bridging the gap between Al capabilities and clinical applicability.

The reliance on 2D imaging in early lung cancer detection using Explainable Convolutional
Neural Networks (CNNs) presents significant challenges, creating a critical gap that limits
diagnostic accuracy and model interpretability. 2D images fail to capture the full spatial
context of lung anatomy, resulting in fragmented representations, loss of critical spatial
relationships, and reduced effectiveness in detecting small or irregular nodules. These
limitations also hinder Explainable Al (XAl) methods, such as Grad-CAM and Integrated
Gradients, as they cannot generate comprehensive visualizations or meaningful insights with

2D inputs. In contrast, 3D imaging provides a holistic view of the lungs, enabling the model
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to analyze nodule characteristics across multiple dimensions, improve spatial understanding,
and enhance the precision of Explainability techniques through detailed 3D heatmaps and
visual overlays. The gap between these approaches is evident in the inability of 2D-based
models to meet the demands of early and reliable lung cancer detection, leading to higher
false negative rates and reduced clinician trust in Al systems. Bridging this gap by adopting
3D imaging allows for more accurate predictions, robust interpretability, and better
alignment with clinical practices, ultimately improving early detection and fostering greater

trust in Al-driven healthcare solutions.

1.4 Research Questions

The research questions formulated to guide this work to come up with an optimal model with
interpretability are the following:

RQ1: Which Deep learning techniques are performing best for early screening and detection

of lung cancer using CT scan images?
RQ2: What is the performance of the proposed model for early-stage lung cancer detection?

RQ3: How do we integrate the explainable Al (XAIl) method for interpretability of the
detection results of the model?

1.5 Objective of the Study

1.5.1 General Objective

The general objective of this study is to build deep learning models for early lung cancer
screening and detection from 3D images with interpretability of the prediction results using
explainable Al (XAl).

1.5.2 Specific Objectives
This study is conducted to achieve the following specific objectives.

e To prepare CT scan lung cancer medical image data for Al model building.
e To select suitable deep learning models for experimentation.

e To develop a 3D CNNs model using lung cancer CT scan raw medical image data.
e Optimize deep learning models that incorporate explainability and interpretability to

support decision-making processes in lung cancer diagnosis.
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e To evaluate the performance of the proposed deep learning model

1.6 Significance of the Study

Lung cancer is a significant public health issue, and early detection is crucial for better
patient outcomes. Deep learning, especially Convolutional Neural Networks (CNNs), has
become a powerful tool for analyzing medical images like CT scans and identifying lung

nodules. Here is how this research can aid radiologists in early lung cancer detection:

3D convolutional neural networks (CNNSs) can be trained to automatically analyze CT scans
and identify potential lung nodules, offering substantial support to radiologists during the
screening process. This enables radiologists to concentrate on evaluating suspicious nodules
and making accurate diagnoses. Deep learning (DL) models have demonstrated exceptional
performance in detecting and classifying lung nodules, often surpassing human accuracy in
certain scenarios. Such advancements enhance early lung cancer detection while reducing
false positives, where patients are incorrectly diagnosed with the disease. By decreasing
unnecessary treatments, 3D CNNs help optimize the allocation of healthcare resources and
improve the patient experience. Additionally, these models process large volumes of data
rapidly and efficiently, allowing radiologists to assess more scans in less time. This leads to

improved patient throughput and shorter waiting times for true cancer-positive diagnoses.

Our research aims to address the "black box™ issue by developing explainable deep-learning
models for lung cancer diagnosis. By using explainable Al techniques, we intend to make
these models more transparent and trustworthy, facilitating their safe and effective
integration into clinical practice. Overall, integrating deep learning into lung cancer
screening workflows can significantly assist radiologists in improving detection accuracy,

ultimately leading to better patient outcomes.

This research can help both the Al developers and radiologists understand how these models
work and make decisions and provide insights into how they can also be improved; this
research will help the medical experts to understand how these models work and make

decisions and provide insights into how they can be improved.

Significance of the Study (from Researchers' Perspective): This study holds significant
value from a research perspective, as it addresses critical challenges and contributes to the
advancement of knowledge and technology in early-stage lung cancer detection. The key
points of significance are as follows:
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Advancement in Al and Computer Vision: This study pushes the boundaries of Al and
computer vision by developing interpretable deep learning models for complex medical
tasks. The integration of 3D Convolutional Neural Networks (3D CNNs) with the
Convolutional Block Attention Module (CBAM) showcases the potential of advanced Al
techniques in handling high-dimensional medical imaging data (He et al., 2018).

Contribution to Explainable Al (XAI): A major contribution of this research is its focus on
explainability. By employing techniques such as 3D Grad-CAM, the study addresses the
critical need for transparency in Al models, making it easier for medical professionals to
trust and understand Al-driven decisions. This work aligns with the growing emphasis on
Explainable Al (XAl), which aims to make Al systems more interpretable and trustworthy
(Barredo Avrrieta et al., 2020).

Pioneering Research in Early Detection Models: The proposed model leverages state-of-the-
art methodologies, such as artificial intelligence and machine learning, to improve the
precision of early-stage lung cancer detection. This aligns with prior studies highlighting the

critical role of Al in oncology diagnostics (Smith et al., 2021).

1.7 Scope and Limitations of the Study

The scope of this research is to develop 3D CNN models for lung cancer diagnosis while
ensuring that these models are transparent and comprehensible for medical professionals,

thereby enhancing their adoption in the medical industry.

Data Used in the Study: Type of Data: the data used in this study consists of volumetric
CT scan images of lung nodules. These images provide detailed three-dimensional
representations of the lungs, allowing for accurate detection and classification of nodules as
benign or malignant. Source Coverage: the primary dataset used is the LUNA22 ISMI
dataset. This dataset is part of the larger Lung Nodule Analysis (LUNA) Grand Challenge,
which is a publicly available collection of lung nodule annotations from anonymized CT
scans. LUNA22 ISMI Dataset: Source: Lung Nodule Analysis (LUNA) Grand Challenge
Composition: The dataset includes 1,176 lung nodules with detailed annotations. These
annotations are created by expert radiologists, providing reliable ground truth labels for
training and evaluating deep learning models. Time Coverage: The time coverage of the
dataset spans multiple years as the data is collected from various sources over time. The

exact collection period may vary, but the LUNA Grand Challenge data has been compiled
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and updated regularly to include diverse and comprehensive cases. LUNA22 ISMI Dataset:
The dataset includes CT scans and annotations collected over the last five years, ensuring a
varied range of cases and scenarios for robust model training. Importance of the Dataset:
The use of the LUNA22 ISMI dataset justifies the use of high-quality, annotated data for
training the model, which helps to achieve reliable and accurate performance in lung nodule
classification. The dataset's diversity in terms of nodule size, shape, and location also helps
in creating a model that generalizes well to real-world clinical scenarios. This comprehensive
dataset forms the backbone of the study, enabling the development of interpretable deep-

learning models for early lung cancer detection to improve patient outcomes.

As noted earlier, numerous deep-learning models have been successfully implemented for
lung cancer detection. However, a significant research gap remains in the interpretability and
optimization of these models. Providing insights into the reasoning behind predictions is
crucial for enabling medical professionals to trust and effectively use these Al-driven
solutions. The scope of explainable Al (XAl) is defined by its boundaries and limitations.
This includes the specific areas where XAl is relevant and the characteristics that define
what "explainable Al" means. Key aspects defining XAl's scope include its relevance to

decision-making in fields like healthcare, finance, and criminal justice.

1.8 Methodology

The methodology of this study encompasses a systematic approach to design, develop, and
validate the proposed model for early-stage lung cancer detection. It integrates data
collection, preprocessing, model development, evaluation, and interpretation to ensure
accuracy, reliability, and generalizability. Also, this study employed a comprehensive
methodology to investigate the application of interpretable 3D Convolutional Neural
Networks (CNNs) for accurate lung nodule classification.

1.8.1 Research Design

The study follows an experimental research design, which is a scientific approach used to
investigate cause-and-effect relationships between variables. In this type of design,
researchers actively manipulate one or more independent variables (IV) to observe their
effects on dependent variables (DV) while controlling for other potential confounding
factors. In the context of our study on early-stage lung cancer detection, the independent

variable could be the type of model or algorithm used for detection (e.g., the proposed Al
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model vs. traditional diagnostic methods), the dependent variable could be the performance
metrics, such as accuracy, sensitivity, or specificity and control variables could include
patient demographics, imaging quality, or clinical data parameters to ensure fairness in the
evaluation. Using an experimental research design allows the study to systematically test
hypotheses, validate findings, and provide actionable insights. By focusing on measurable
outcomes like sensitivity, specificity, and AUC-ROC, the study ensures robust and
scientifically sound results, establishing the model's viability for clinical adoption. And also
it aimed at developing a predictive model and validating its performance on clinical and
imaging datasets. The steps are organized into three main phases: data acquisition, model

development, and performance evaluation.

1.8.2 Data collection and preparation

Dataset: We chose to leverage publicly available datasets curated for research purposes.
Among the datasets we explored were LIDC-IDRI, LUNA16, Kaggle Data Science Bowl,
and LUNA22-ISMI. After conducting thorough exploratory data analysis on these and other
additional datasets, we selected the most recent and computationally inexpensive dataset for
our study: the LUNA22-ISMI dataset. This selection was based on its suitability for our
research needs and its ability to provide relevant and high-quality data for our deep learning
model. Data loading and Exploration: CT scan images were loaded and visualized using
ITK-SNAP software for initial exploratory data analysis. Data Characteristics: The
distribution of Hounsfield Units (HUs) within the lung nodules was analyzed, revealing a
range from -3024.0 to +6054.0. Data Preprocessing: Windowing: To focus on the lung
parenchyma and reduce noise, HU values were clipped to the range of -1000 to 400 HU.
Normalization: Min-Max scaling was applied to normalize pixel intensity values within the
range of -1 to 1, ensuring consistent data representation for the model. Data Augmentation:
To address the class imbalance and improve model robustness, various augmentation
techniques were applied to the training data, including flipping, scaling, translation, noise
addition, contrast adjustment, and elastic deformations. Resizing: 3D nodule patches were
resized to a consistent dimension using spline interpolation to ensure compatibility with the

input requirements of the 3D CNN models.

1.8.3 Implementation Tools

For implementing the proposed model for "Explainable 3D CNNs for Accurate Lung Nodule

Classification,” various tools and programming resources were utilized to streamline data
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processing, model development, and evaluation. Here’s an overview of the tools and their

roles:

Implementation Tools Hardware: GPU (Graphics Processing Unit): High-performance
GPUs, such as NVIDIA Tesla or RTX series, were used for training the deep learning
models. GPUs accelerate the computation of large neural networks, significantly reducing

training time.

CPU (Central Processing Unit): Standard CPUs were used for data preprocessing and other

tasks that do not require extensive parallel computation.

Software: Python Programming Language: Python was the primary programming language
used for implementing the research. Its extensive libraries and ease of use make it an ideal

choice for developing machine learning models.

Python Packages Used for Modeling: TensorFlow: An open-source deep learning
framework developed by Google. TensorFlow provides the underlying infrastructure for

training and constructing deep learning models.

Keras: A high-level neural networks API that runs on top of TensorFlow. Keras simplifies
the process of training neural networks, making it easier to experiment with different

architectures.

NumPy: A necessary library for scientific computing with Python. NumPy supports large,
multi-dimensional arrays and matrices, along with a collection of mathematical functions to

operate on these arrays.

SciPy: An open-source library used for scientific and technical computing. SciPy is used for

tasks such as data augmentation, statistical analysis, and numerical integration.

Scikit-learn: A machine learning package that provides simple and efficient algorithms and
tools for data analysis. Scikit-learn has been critical for preprocessing tasks, such as scaling
and splitting data, as well as for evaluating model performance using metrics like accuracy,

recall, precision, and F1-score.

Matplotlib and Seaborn: A plotting library used for creating static, interactive, and animated

visualizations in Python. It is used to visualize the training process and performance metrics.
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Seaborn: This is a data visualization library based on Matplotlib, which offers a high-level
interface for sketching attractive statistical graphics.

OpenCV: An open-source computer vision package that is used for image and video

processing tasks, such as reading, writing, and manipulation.

Grad-CAM (Gradient-weighted Class Activation Mapping): An implementation of the Grad-
CAM technique used for generating visual explanations of the model's predictions. This
helps in understanding regions of the input image that are mostly influencing the model's

decision.

H5py: A Pythonic interface to the HDF5 binary data format. It was used to store and manage
large amounts of numerical data generated during the training process.

Use of Python Programming: Python programming plays a crucial role in conducting
research and enabling the development and implementation of complex deep-learning
algorithms. Its extensive libraries and frameworks provide the necessary tools to preprocess
data, design and train neural networks, and evaluate model performance. Python's simplicity
and readability also facilitated rapid prototyping and experimentation, allowing us to fine-

tune the models for optimal performance.

1.8.4 Evaluation Method

After splitting the data set using the hold-out method, the model performance is evaluated
using a set of metrics, such as accuracy, recall, precision, F1-score, and AUC-ROC.

1.9 Organization of the Thesis

There are six chapters in the thesis. The second chapter is dedicated to understanding the
fundamentals of medical imaging, specifically scans, Convolutional Neural Networks of DL
and related works done for lung cancer screening, and finally, XAl and related works done
in the healthcare sector. The third chapter discusses the materials and methods used for the
research work. Chapter four is devoted to describing the implementation of the proposed
model. Chapter five is all about the discussion of results found in every step of the
implementation phase, including the performance metrics used for evaluation of the DL
models. Last but not least, the last chapter is everything regarding conclusions and

recommendations for future work.
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CHAPTER TWO
LITERATURE REVIEW

2.1 Overview

This chapter presents an extensive review of literature on topics directly related to this
research. As previously mentioned, the primary objective of the current study is to develop
an interpretable deep-learning model for detecting and classifying lung cancer from lung CT
scan data. The following sections explore fundamental concepts in medical imaging and the
data associated with medical images, particularly CT scans. We then discuss topics related
to Convolutional Neural Networks (CNNSs), their applications in computer vision, and
relevant works on lung cancer detection and classification. Finally, we delve into

Explainable Al (XAl), its taxonomies, and related XAl applications in healthcare.

2.2 Medical Imaging

Medical Imaging refers to a collection of methods and technologies applied to create visual
representations of the internal structure of the human body. It allows healthcare professionals

to:

Diagnose diseases: Identify abnormalities, such as tumors, fractures, or infections. Guide
treatment planning: Plan surgical procedures, radiation therapy, and other interventions.
Monitor treatment progress: Track the effectiveness of treatment plans and assess disease
progression. Conduct research: Advance medical knowledge and develop new diagnostic

and therapeutic approaches.

Visual representation, with the help of Medical Imaging, is crucial for identifying and
diagnosing a variety of illnesses, guiding the development of treatment plans, and monitoring
their effectiveness. Medical imaging is extensively employed to visualize internal structures

of body parts, such as muscles, organs, bones, blood vessels, and others (Islam et al., 2023).

2.2.1 General Workflow of Radiologists

A radiologist's workflow begins with a doctor referring a patient for imaging and the
radiology department scheduling the appointment. Depending on the type of scan, patients
may need to fast or take contrast material. The radiologist then positions the patient, adjusts

the machine settings, and ensures the patient's comfort and safety. The technician captures
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the images and adds relevant metadata. Finally, the radiologist analyzes the images,
compares them to previous studies, and writes a report with observations, conclusions, and

recommendations (Giard, 2023).

The Radiologist

CT scan, ) (Interprets) -

X-Ray... / (Medical)

Figure 2.1 Basic workflow of a radiologist (Giard, 2023).

2.2.2 CT-scan

Medical imaging modalities encompass various techniques designed to generate visual
representations of the human body, aiding in the diagnosis and treatment of diseases (Islam
et al., 2023). Common modalities include Radiography, Computed Tomography, Magnetic
Resonance Imaging, Ultrasound Imaging, and Positron Emission Tomography.
Radiography (X-ray Imaging): Produces 2D images through projection radiography, such
as chest X-rays. Computed Tomography (CT): Generates detailed cross-sectional images
of the body and produces 3D visualizations using X-rays. Magnetic Resonance Imaging
(MRI): Provides high-resolution 3D images using magnetic fields and radio waves.
Ultrasound Imaging: Captures 2D or 3D images using high-frequency sound waves.
Positron Emission Tomography (PET): Produces 3D images to visualize metabolic

processes in the body.

A CT-Scan, or a CAT-Scan, stands for Computed Axial Tomography, Where the term
'tomography' comes by combining two Greek words, ‘tomos' (meaning 'slice’) and ‘graphein’
(meaning 'to write'). The CT scan uses radiation to create detailed images of internal
structures from various angles by measuring the intensity of X-rays passing through the body
part this is -achieved with the help of detectors. More details on CT scan imaging can be

found in Appendix C.

2.2.3 Hounsfield Units

The physical density of a tissue or organ is directly linked to photon attenuation or
absorption. The CT detectors measure the extent to which tissues attenuate photons (i.e.,
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their density), and the image processor converts this data into byte values, which are then
used to assign appropriate pixel brightness in the image. Each value of the image on this
scale is known as a Hounsfield Unit (HU), named after Hounsfield, and the full range of
these values constitutes the Hounsfield scale. (Shady Hermena & Michael Young, 2023).

In CT scans, the physical density of a tissue or organ directly correlates with its ability to
attenuate (absorb) X-ray photons. The CT scanner measures the degree to which different
tissues attenuate X-rays and translates these measurements into a standardized scale called
Hounsfield Units (HU).

HU Scale: is a relative measure of radiodensity, where- Water is assigned a value of 0 HU,
Air is assigned a value of -1000 HU, and Dense bone can have values exceeding +1000 HU.
HU Values and Tissue Density: Higher HU values indicate denser tissues that absorb more
X-rays. Lower HU values indicate less dense tissues that allow more X-rays to pass through.
Image Formation: The CT scanner measures the attenuation of X-rays passing through the
body at multiple angles. This data is then processed by a computer to reconstruct 3D images
of the body. Each pixel in the CT image is assigned an HU value, representing the relative
density of the corresponding tissue. Clinical Significance: HU values provide valuable
information for radiologists to differentiate between different types of tissues and identify
abnormalities. For example, lung tissue typically has low HU values, while bone has high
HU values. Abnormalities such as tumors or calcifications may have distinct HU values that
help in their diagnosis. (Shady Hermena & Michael Young, 2023). Figure 2.2 shows the

HU scales of different substances or materials.

Water Blood
0 +30 to +45

Air Lung Fat Kidney Soft tissue Bone
-1000  -700 to -600 —100 to -50 +30 +100 to +300  +400 to +1000

Figure 2.2 Hounsfield Unit Scale (https://en.wikipedia.org/wiki/Hounsfield_scale).

In CT scans, the Hounsfield Unit (HU) values for various tissues are calculated using an
Equation. (2.1) (Shady Hermena & Michael Young, 2023).

HU = 1000 x* Utissue™ Hwater 21

Uwater— Hair
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Where: P . IS the linear attenuation coefficient of the tissue or organ and W,y q¢er and

Wi are the linear attenuation coefficients of water and air, respectively (Shady Hermena &
Michael Young, 2023).

The Hounsfield unit (HU) is a measure of tissue density based on X-ray attenuation,
represented pixel by pixel. A higher HU value indicates denser tissues, such as bone, while
a lower HU value indicates less dense tissues, such as air. The Linear Attenuation Coefficient
() quantifies how X-rays interact with tissues; a higher p means more X-ray absorption

(denser tissue), while a lower p means less X-ray absorption (less dense tissue).

HU is derived from the linear attenuation coefficient of a tissue compared to water (reference
point). In a CT scan, that is proportionate to the degree of X-ray attenuation (Al-Zahrani,
2017). The conversion from pixel data to HU is a linear transformation using equation (2.2)
(Shady Hermena & Michael Young, 2023).

HU = pixel value * slope + intercept 2.2
The formula in equation (2.2) requires two key values stored within the CT scan image files.
Rescale slope (slope) scales the pixel intensity to physical units, and Rescale intercept

(intercept) adjusts the baseline for the HU scale.

2.2.4 Data Formats in Medical Imaging

The DICOM and NIFTI formats are among the most widely used data and image formats in
medical imaging due to their efficiency and compatibility. These formats are not exclusive
to CT scans but are extensively utilized across a broad range of imaging modalities, such as
MRI, X-ray, Ultrasound, and PET scans. DICOM (Digital Imaging and Communications in
Medicine) is particularly notable for its ability to store not only image data but also metadata,
including patient information, imaging parameters, and equipment details, making it
indispensable in clinical workflows. On the other hand, NIFTI (Neuroimaging Informatics
Technology Initiative) is primarily used in neuroimaging research due to its streamlined
format for storing volumetric data. Beyond these, other formats like JPEG and PNG are
occasionally used for simplified visualization, though they lack the comprehensive metadata
capabilities of DICOM and NIFTI. Each format serves a specific purpose, ensuring

versatility in handling diverse medical imaging needs. (Heindl, 2022; Li et al., 2016).
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DICOM: “Digital Imaging and Communications in Medicine is the international standard
for medical images and related information. It defines the formats for medical images that
can be exchanged with the data and quality necessary for clinical use.” (NEMA PS3/ 1SO
12052 et al., 2024). It is used for storing and sharing medical images in hospitals. DICOM
files have a file extension of “.decm” or “.dicm.” It has two parts: Header: Contains patient
information, study details, and image metadata. And Body: Stores the actual image data (2D,
3D, or 4D) (Heindl, 2022; Li et al., 2016).

Primarily used in clinical settings, raw scanner data often comes in DICOM format. Tools
exist to handle DICOM files, like the “PYDICOM?” library, their complexity often leads to
conversion to other formats for research and machine learning (Li et al., 2016). They have
Key-value pairs for easy access to data using unique tags. An example is shown in Figure
2.3

(0008, 0060) Modality CS: 'CT'

(0018, OOié} Body Part Examined CS: ;éﬁEST'

(7fe0, OOib} Pixel Data OW: A££ay of 524288 elements
N J ~ J — ~ /
Tag Explanation Value

Figure 2.3 Sample DICOM file key-value pairs to access the data (from our visualization).
NIfTI: Neuroimaging Informatics Technology Initiative Open file format for medical
images, often used in neuroimaging research. Simpler and more interoperable than DICOM.
Smaller file size, easier for storage and sharing. It has two parts: The Header contains
essential information about image geometry, not patient or scanner details. The body stores
the actual image data (Heindl, 2022; Li et al., 2016). Similar to the DICOM files, the data

can be accessed using libraries with header index.

dim : [3 512 512 269 1 1 1 1]
datatype: float32

pixdim : [-1. 0.898438 0.898438 1.25 0. 0. 0. 0.1
—_ v

Index Value
Figure 2.4 Sample metadata of NIFTI formats (from our visualization)

NIfTI and DICOM differ from each other in the following ways: while DICOM works with
2D layers, NIfTI can display 3D detail (with NIfT1 files, images, and other data saved in a
22



3D format). NIfTI can take longer to load, while DICOM allows users to display one layer
at a time. Less metadata is included in NIfTI files. More information can be contained in
DICOM files.

2.3 Deep Learning

Deep Learning (DL) is a subfield of Machine Learning (ML) that utilizes models based on
Artificial Neural Networks (ANN). DL algorithms have extensive applications in healthcare,
particularly in informed clinical decision support systems. Compared to DL, classical ML
has not been as effective in addressing problems such as Natural Language Processing
(NLP), image detection, image recognition, and other complex tasks. Therefore, for this
research study, DL and its various architectures and tools, especially for feature extraction,
are the appropriate choices. DL's ability to automatically learn and extract intricate features
from data makes it highly suitable for advancing healthcare technologies and improving

diagnostic accuracy.

Powerful computational models are capable of learning complex representations from data
through multiple processing layers. These models have achieved state-of-the-art results in
various domains, including speech recognition, image recognition, and object detection.
They utilize backpropagation to adjust internal parameters and uncover intricate patterns in
large datasets. There are different types of deep learning models (Lecun et al., 2015):
Convolutional Neural Networks (CNNs): Excel in processing images, videos, and audio
by capturing spatial hierarchies in data through convolutional layers. Recurrent Neural
Networks (RNNs): Specialized in handling sequential data like text and speech, making
them ideal for tasks involving time series and natural language processing. Generative

Adversarial Networks (GANSs): Known for generating realistic images, videos, and other
data by pitting two neural networks against each other in a game-theoretic framework.
Autoencoders: Used for tasks such as dimensionality reduction, denoising, and
unsupervised learning by encoding input data into a lower-dimensional space and then

reconstructing it.

These models continue to push the boundaries of what artificial intelligence can achieve,

providing advanced solutions across various applications.(Lecun et al., 2015).

The fundamental components of deep learning systems are Neural Networks (NN) or
Artificial Neural Networks (ANN). The term "network™ refers to a structure similar to a
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graph, while "neural™ is derived from "neuron.” Thus, an "Artificial Neural Network™ is a
computing system designed to mimic or, at the very least, draw inspiration from the neural
connections found in the human nervous system (Rosebrock, 2017). These networks consist
of interconnected nodes or "neurons” that process and transmit information, much like the
neurons in the human brain. By adjusting the connections and weights between these nodes
through training, ANNS can learn to recognize patterns and make predictions, enabling them
to perform complex tasks such as image recognition, natural language processing, and more.
This biologically inspired approach is at the core of many advancements in artificial

intelligence and machine learning.

For a system to be classified as a Neural Network (NN), it must have a directed, labeled
graph structure where each node in the graph performs simple computations. Each of these
nodes, or individual neurons, is referred to as a "perceptron™ or “artificial neuron”
(Rosebrock, 2017). The perceptron is the fundamental building block of an NN, capable of
processing input data and generating an output based on learned weights and biases. This
structure allows NNs to model complex relationships in data, making them powerful tools
for tasks such as pattern recognition, classification, and regression. By connecting multiple
perceptrons in various layers, NNs can learn to perform intricate functions and make accurate

predictions across different applications.

Each node in a Neural Network (NN) performs a basic calculation. The output, or signal,
from this calculation is transmitted to other nodes through connections, each marked with a
weight that indicates the degree of signal amplification or attenuation. Connections with
significant positive weights amplify the signal, highlighting its importance in the
categorization process. Conversely, connections with negative weights attenuate the signal,
suggesting that the node's output is less critical for the final categorization. When a system
has a graph structure with adjustable connection weights via a learning algorithm, it is
referred to as an Artificial Neural Network (ANN) (Rosebrock, 2017). This configuration

allows ANNSs to learn from data by adjusting the weights during training, enabling them to
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recognize patterns and make accurate predictions. Figure 2.5 illustrates a single-layer

artificial neuron or perceptron, showcasing the fundamental building block of an ANN.

b

Figure 2.5 Single-layer neural network (https://www.researchgate.net).
It receives all the inputs (X1, Xo, X3) and the weights (W1, W2, W3), and the summation

function sums all the inputs multiplied by the weights and then adds the bias:
S= [XLawi*x]+b 2.3

F(S) is an activation (transformation) function; the output of the summation function can be
the input to the activation function. After we apply the activation function on it, it will give

us Output.
Output = F(S) 2.4
There are different types of activation functions some of them are the Step function, Signum

function, linear function, ReLu function, Leaky-ReLu function, sigmoid function, Softmax
function, and Hyperbolic Tangent function. Figure 2.6 shows a multi-layered feed-forward

NN.K

Perceptron

Layer O Layer 3
(Input layer) Layer3 LaynrZ {Output layer)

\ !
~ /
e _ -

Hidden layers

Figure 2.6 a multi-layer feed-forward ANN (https://www.researchgate.net).
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Deep Learning (DL) models are a powerful subset of machine learning algorithms that learn
intricate representations from data through multiple processing layers. They have achieved
state-of-the-art results in various domains, including image recognition, natural language
processing, and speech recognition. Deep Learning (DL) models are commonly categorized

into three types: supervised, unsupervised, and semi-supervised.

Supervised DL models: These use labeled data or examples where the target variable or
desired output is known. Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are widely used supervised DL models. CNNs, in particular, excel at
processing image, speech, or audio signal inputs and are highly effective in applications such
as image classification, object detection, feature extraction, and image segmentation.
Unsupervised DL models: These extract structure and patterns from unlabeled data.
Autoencoders are prime examples of unsupervised neural networks, which learn to encode

and reconstruct input data, helping to discover underlying data representations.

Semi-supervised DL models: These are used when labels are available for part of the data
but not for the rest. They combine the strengths of both supervised and unsupervised learning
to improve model performance when labeled data is limited. By leveraging these types of
DL models, researchers can address a wide range of complex problems in various domains,

advancing the capabilities of artificial intelligence (Rosebrock, 2017).

Convolutional Neural Networks (CNNs) have proven particularly effective in various image
processing tasks; there are three main kinds of layers in CNN. The first one is the
Convolutional Layer, which is a core component Responsible for most computations in
CNNs. Key elements include Input data, which is the image to be analyzed. Filters are small
matrices that detect specific features in the image. Feature maps that are outputs of filters,
indicating where features are found. The convolution process involves a filter sliding across
an image and computing dot products with input regions. The resulting output feature map
highlights the locations where the filter detects the desired features. Key hyperparameters in

this process include:

e Number of filters: Determines the number of feature maps produced.
e Stride: Controls how much the filter shifts, affecting the output size.
e Padding: Adds zeros to the image border, if needed, to maintain the output size.

After each convolution operation, an activation function is applied to introduce non-linearity

into the CNN model, which helps the model learn more complex relationships in the data.
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This step is crucial for enabling the model to capture intricate patterns. Figure 2.7
demonstrates how the convolution layer operates and provides the formula to calculate the
size of feature maps. By fine-tuning these hyperparameters, CNNs can be optimized for

various tasks, such as image classification, object detection, and feature extraction.

31312 |10
0 |0 |1 |3 |1
31112 (2 |3 01112 12 | 12 | 17
2 |00 |2 |2 21210 W 10 | 17 | 19
2 10 |0 |0 |1 01112 9 |6 |14
Filter =3 x 3 Input =5 X 5
Output=3x3

Figure 2.6 Illustration of how the convolution is done.

input size—filter size+(2+*padding)
strid

+1 2.5

output size =

Convolution layers can be stacked sequentially within a Convolutional Neural Network
(CNN). When this occurs, the structure of the CNN becomes hierarchical, as the pixels in
the receptive fields of earlier layers are accessible to subsequent layers. This hierarchical
arrangement allows the CNN to progressively capture more abstract and complex features
from the input data. Early layers typically detect simple patterns, such as edges or textures,
while deeper layers identify more sophisticated structures, like shapes or objects. This
layered approach is crucial for the effective performance of CNNs in various tasks, including

image classification, object detection, and feature extraction.
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Figure 2.7 Hierarchical CNN structure
(Source: http://viraai.com/wp-content/uploads/2021/10/5.jpg).

The second key type of layer in Convolutional Neural Networks (CNNs) is the Pooling
Layer, which is designed to downsize feature maps. This process reduces both the number

of parameters and the spatial dimensions (width and height) of the data, making
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computations more efficient. Pooling layers help the model focus on the most prominent

features while discarding less critical details, thereby simplifying the overall structure.

There are two primary types of pooling: Max pooling and average pooling. Max Pooling:
extracts the maximum value from each local region within the feature map. It effectively
captures the most important feature (the strongest activation) in that region. Average
Pooling: on the other hand, computes the average of the values in each local region,

providing a more generalized representation of the region. (Zhao, L., Zhang, Z. A, 2023)

Pooling serves several important purposes, as presented below: Robustness to Variations:
By focusing on key features, pooling makes the model less sensitive to small changes in the
image, such as translations, distortions, or other minor variations. This ensures that the
network maintains performance even if the input image undergoes slight transformations.
Overfitting Reduction: By downsampling the data and reducing the overall complexity,
pooling helps prevent the model from overfitting, ensuring better generalization to unseen
data.

The pooling operation typically uses a fixed window size and stride, similar to convolutional
layers, to systematically scan through the feature maps. Pooling layers are crucial for -
building deeper networks that are computationally efficient and capable of extracting high-

level abstractions from the input data.

The third type of layer in a Convolutional Neural Network (CNN) is the Fully Connected
Layer (FC layer). This layer analyzes features extracted by previous layers and classifies the
data. Each output node in the FC layer is connected to all other nodes, enabling the
integration of information across the entire network. Typically, the SoftMax activation
function is used for multiclass classification, while the sigmoid function is employed for
binary classification. These activation functions transform the output into probability values
ranging from 0 to 1, which represent the likelihood of each class or category. By using FC
layers, CNNs can effectively perform tasks such as image classification, object detection,

and feature extraction, delivering accurate and reliable results.

Convolutional Neural Networks (CNNs) have undergone substantial architectural evolution,
transforming from relatively simple designs to highly complex and efficient models. A
foundational milestone in this journey was LeNet, introduced by Yann LeCun in 1989.

Designed for handwritten digit recognition, LeNet utilized a shallow seven-layer architecture
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that operated on grayscale images of size 32x32 pixels. Its success demonstrated the potential
of CNNs for automating feature extraction and achieving high accuracy on image-based

tasks.

Following LeNet, the field witnessed a rapid acceleration in the development of more
powerful CNN architectures. A turning point came with AlexNet, the winner of the 2012
ImageNet competition. AlexNet, featuring an eight-layer deep architecture, leveraged
advances in computational resources like GPUs to showcase the power of deeper models. Its
groundbreaking performance highlighted the potential of deeper networks for tackling
complex vision tasks, sparking a wave of innovation. Subsequent architectures further
pushed the boundaries of depth and efficiency; VGG (2014) Introduced a family of
architectures that demonstrated the effectiveness of stacking numerous convolutional layers
with small 3x3 filters. This approach emphasized simplicity and uniformity, making VGG a
widely adopted baseline for research. ResNet (2015): Revolutionized deep learning with the
introduction of residual connections, allowing networks to scale to unprecedented depths
without suffering from vanishing gradients. Inception (2014): Pioneered the use of multi-
scale feature extraction within a single layer through its "Inception modules,” improving
efficiency and performance. DenseNet (2016): Enhanced feature reuse by connecting each
layer to every subsequent layer, leading to more efficient parameter utilization. EfficientNet
(2019): Optimized network design by balancing depth, width, and resolution, achieving

state-of-the-art performance with fewer parameters and lower computational costs.

These advancements have not only expanded the capabilities of CNNs but also inspired
innovations in optimization techniques, hardware accelerations, and applications across

diverse fields like medical imaging, autonomous vehicles, and natural language processing.

The training of Convolutional Neural Networks (CNNs) is accomplished using the
backpropagation algorithm. This process involves calculating the weights and biases that
best fit the model by minimizing the error, which is the difference between the predicted and
actual values. Backpropagation updates the weights and biases of the network in a way that
reduces this error, allowing the model to learn and improve its performance over time. By
iteratively adjusting these parameters, the network can better capture the underlying patterns

in the data, leading to more accurate predictions and classifications.
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2.4 Explainable Al (XAl)
2.4.1 Introduction to XAl

The field of XAl (Explainable Artificial Intelligence) aims to make machine learning models
more understandable and interpretable. This is particularly important in sensitive areas like
healthcare and finance, where users need to trust and understand the decisions made by these
models. The terminologies used and goals of XAl are as follows as given by (Ali et al. 2023;
Barredo Arrieta et al., 2020; Conor O’Sullivan, n.d.)

One of the terminologies used is Explainability, which describes the active process of
making a model's inner workings clear and easy to understand. The other is Interpretability,
which shows the model's inherent characteristic of being understandable to humans. The
third one is Understandability, the ability of a model to be understood without detailed
explanations. Also, Comprehensibility is used to describe the ability of a model to express
its knowledge in a way that humans can understand. Finally, the term Transparency
expresses the ability of a model to be understood on its own.

As pointed out by (Ali et al., 2023 Barredo Arrieta et al., 2020 and Conor O’Sullivan, n.d.),
the goals of XAl include the following. One is trustworthiness, which means that XAl
enables the building of trust with domain experts and users affected by the model's decisions.
Two, Causality, i.e., understanding the causal relationships between inputs and outputs.
Third, Transferability; XAl ensures the model's performance generalizes to new data. Four,
Informativeness: providing evidence to support the model's predictions. Five, Confidence;
ensuring the model's predictions are reliable and stable. Six, Fairness: mitigating biases and
ensuring fair outcomes for all. Seven, Accessibility: making the model's explanations
accessible to different stakeholders. Eight, Interactivity, allowing users to interact with the
model and explore its explanations. Finally, Privacy is protecting user privacy while

providing explanations.

Explainable Al is focused on creating Al systems that are transparent and explainable to
human users. This allows users to understand how decisions are being made by the system
and to detect biases or errors. These aspects together define the scope of explainable Al,
where decisions are made based on Al while also emphasizing human interaction and

alignment with human values and goals.
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XAl research seeks to achieve these goals through various techniques, ultimately aiming to

improve the trust, reliability, and responsible use of machine learning models.
According to Kenton (2023), there are Black Box, White Box, and Gray Box Models in XAL.

e Black Box: Opaque inner workings. Difficult to understand and trust its decisions.
e White Box: Fully interpretable but often less accurate.
e Gray Box: Offers a balance between interpretability and accuracy, allowing partial

understanding of the model's reasoning.

Black Box XAl
Training ML Learned Decisionor
Data Process Model Recommendation '“

White Box XAl User
Training ML | XAl Decision or -
Data » Process | Model Recommendation g

+
Explanation

User
Figure 2.8 Black Box Al vs. White Box XAl.

XAl research suggests that it might be possible to overcome the traditional tradeoff between
model complexity (and accuracy) and interpretability. This means we could potentially have

models that are both accurate and understandable (Barredo Arrieta et al., 2020).

A
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Figure 2.9 Interpretability vs. Accuracy.
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Similarly, (Conor O’Sullivan, n.d.) Has put the interpretability spectrum as shown in Figure
2.11 below. As models become more complex, they become less interpretable. An ML model
is a function. The input consists of the model's features, while the output is its predictions.
A function that is too complex for a human to comprehend is a black-box model. To be able

to peek inside the black box and comprehend how the model functions, we require an extra

approach.
Intrinsically .
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Figure.10 The Interpretability Spectrum (Interpretability vs. Explainability).

Intrinsic interpretability emphasizes creating simple models, such as decision trees or linear
regression, that are naturally understandable because of their straightforward structure.
However, these models often face limitations in capturing complex non-linear relationships
within the data (Stiglic et al., 2020). This trade-off between simplicity and the ability to
model intricate patterns highlights the ongoing challenge of achieving both high

interpretability and performance in machine learning models.

2.4.2 Taxonomy of Explainability Methods

Taxonomies are indeed valuable for organizing discussions, but the sheer variety and
complexity of Explainability techniques make it challenging to create a single, practically
applicable taxonomy (Speith, 2022). The diverse methods used in Explainable Artificial
Intelligence (XAI) span different domains and address various aspects of model
interpretability, making it difficult to encapsulate them all under one unified framework. As
a result, multiple taxonomies and categorization approaches are often employed to better

address the specific needs and contexts of different Explainability techniques.

32



There are various classification criteria used to categorize techniques for ML interpretability.

Some of them are as follows: as described by (Molnar, 2022).

Local vs. Global Explanations: This categorization criterion examines whether an
Explainable Al (XAI) method explains a particular sample or the entire model. It asks
whether the model's overall behavior or a specific prediction is elucidated by the

interpretation method.

Local Explanations: These provide insights for individual samples. Results from local
methods can be averaged across samples. Local interpretability highlights the importance of
features for any single prediction, illustrating the model's behavior at a specific data point.
This involves a sort of "what-if" analysis, where changes to feature values for selected data
points are observed, and the resulting changes in the prediction value are noted. Local
explanations can show how a prediction would change when a feature changes (Molnar,
2022).

Global Explanations: These provide insights for the entire model or groups of samples. In
global interpretation, an overall view of the model is given, along with data predictions and
explanations. This includes data exploration, which displays an overview of the dataset along
with prediction values, and global importance, which aggregates feature importance values
across individual data points and demonstrates how features affect changes in model
prediction values (Molnar, 2022). Global methods will weigh input parameters the same way
regardless of individual predictions.

Model Agnostic vs. Model Specific Explanations: This classification asks the question,
does the interpretation depend on a particular Model? Model-specific interpretation tools
are limited to specific models, while model-agnostic tools can be used on any ML model.
Agnostic methods usually work by analyzing feature input and output pairs. These methods
cannot have access to model architecture, such as layer weights or structural information

(Molnar, 2022). Figure 2.12 shows some Explainability methods in their class.
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Figure 2.11 Examples of XAl methods in their class.

Ad-hoc vs Post-hoc Explanations ask the question, when does the explanation occur? In ad-
hoc explanations, the model has been designed to be intrinsically explainable (Molnar,
2022).

Data modality-specific vs. Data modality-agnostic explanations

These are based on the type of data they handle. Data Modality Specific Explanations are
methods that are tailored to a specific type of data, such as tabular data, time-series data, or
imaging data. For example, Grad-CAM (Gradient-weighted Class Activation Mapping) is
specifically applicable to data related to Convolutional Neural Networks (CNNs) like

images.

On the other hand, Data Modality Agnostic Explanations are designed to be versatile and
can work with any type of data. They are often model-neutral or model-agnostic, meaning
they can be applied regardless of the underlying machine-learning model. These
explanations provide flexibility in analyzing and understanding different data types without
being limited to a specific modality (Molnar, 2022).

By understanding the differences between these approaches, users can choose the most
appropriate Explainability method based on the type of data they are working with.

Surrogate Models vs. Attribution/Visualization Methods

Surrogate models use an interpretable model or a simpler one that simulates a black box's
behavior. Attribution/ visualization methods attempt to visualize certain aspects of the model

to allow an explanation of why and how the model reaches a decision (Molnar, 2022).
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On the other hand, a work by Speith (2022) reviewed recent approaches and classified them
into four approaches: The functioning-based approach, which is the way the Explainability
methods extract information from the model, the other is result-based approach, which
focuses on interpreting or extracting insights directly from the outputs or predictions of the
model. The conceptual approach is to partition the field into several conceptual dimensions,
and the mixed approach is a hybrid of the above three approaches. The paper's thorough
taxonomy approaches are comprehensive and beginner-friendly the illustration below shows
the mixed approach, which is likely good for newcomers in the field. It has Top level: scope
distinction. Middle level: applicability distinction. And Bottom level: elements of other

approaches.
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Figure 2.12 General taxonomy of the hybrid approach.

2.4.3 Overview of Popular XAl Methods

LIME (Local Interpretable Model-Agnostic Explanations) Creates simplified models around

specific data points to understand their influence on predictions (Ribeiro et al., 2016).

SHAP (Shapley Additive exPlanations): Uses game theory concepts to attribute credit for
predictions to individual features, providing detailed insights into their impact (Lundberg &
Lee, 2017).

PFI (Permutation Feature Importance): Assesses feature importance by shuffling feature

values and observing the model's performance change (Mi et al., 2021).

LRP (Layer-wise Relevance Propagation): Back propagates the prediction score through the
model, assigning relevance scores to features and activations in each layer, providing a more

granular understanding of the decision-making process (Bach et al., 2015; Sarker, 2021).

35



Grad-CAM, which stands for Gradient-weighted Class Activation Mapping, is a technique
used in deep learning, especially with convolutional neural networks (CNNS). It helps us
understand what parts of an image are most important to CNN's prediction for a particular
class. According to (Selvaraju et al., 2017), it works with an input image and model (pre-
trained CNN model). The model analyzes the image and calculates the gradients of the final
classification score concerning the activations of the last convolutional layer. Gradients

indicate how much each activation in the layer influences the final score (Grad Calculation).

Then, gradients are used to weigh the activations in the convolutional layer, creating a class
activation map. This map highlights the image regions that have the most influence on the
classification (Class Activation Map). The class activation map is overlaid on the original
image, typically as a heatmap. Brighter areas represent image regions the model focused on
for its prediction (Visualization). Grad-CAM offers a way to interpret the "black box" nature
of deep learning models, particularly CNNs used in image recognition. By visualizing the

important regions, we gain insights into why the model made a specific prediction.

Grad-CAM is versatile and can be applied to various CNN architectures without modifying
the model itself. Grad-CAM is particularly useful for diagnosing model predictions and
improving trust in their decisions. There are advanced libraries available, like Pytorch-grad-

cam, that provide functionalities for implementing Grad-CAM (Selvaraju et al., 2017).

There are many other XAl techniques as well, XAl is a rapidly evolving field with a variety
of techniques to understand and explain Al models. By choosing the right XAl method for
your specific needs, you can unlock the full potential of Al while ensuring transparency and

responsible use.

2.4.4 Explainability in Healthcare Applications

Explainable Artificial Intelligence (XAI) has become a crucial area of research in healthcare
applications that utilize deep learning models. Despite the impressive accuracy these models
can achieve in tasks like medical image analysis and disease prediction, their "black-box"
nature raises significant concerns regarding transparency, accountability, and trust among
medical professionals and patients. The importance of Explainability in healthcare

applications includes the following:

Transparency: Providing clear and understandable insights into how deep learning models
make decisions, enabling healthcare professionals to trust and validate the results.
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Accountability: Ensuring that the models' predictions and decisions can be traced back and
justified, which is essential for ethical considerations and regulatory compliance.

Trust: Building confidence among healthcare providers and patients in Al-driven outcomes,
fostering acceptance and adoption of advanced technologies in medical practice.

Improved Decision-Making: Allowing clinicians to interpret and understand model
predictions, leading to better-informed clinical decisions and personalized treatment plans.

Bias Detection: Identifying and mitigating potential biases in the models, ensuring fair and
equitable treatment for all patient groups.

Regulatory Compliance: Meeting legal and ethical standards that require explanations for
Al-driven medical decisions, particularly in sensitive and high-stakes scenarios.

By addressing these concerns, XAl can enhance the integration of deep learning models into
healthcare, ultimately improving patient outcomes and the overall quality of care. Clinicians
need to understand the rationale behind an Al model's recommendations to trust its output
and integrate it into their decision-making process. Without explanations, clinicians might
hesitate to adopt Al tools, hindering their potential benefits for patient care (McKelvey et
al., 2018).

Explainable models can help identify and mitigate potential biases in the training data that
could lead to unfair or discriminatory outcomes for certain patient groups. By understanding
how the model arrives at its decision, developers can address these biases and ensure fair
treatment for all patients (Whittaker, 2019).

Patients have a right to understand the reasoning behind Al-driven diagnoses or treatment
recommendations. Explainability can facilitate better communication between patients and
healthcare providers, fostering patient trust and engagement in their care (Guerra-

Manzanares et al., 2023).

A study (Alghamdi, 2022) employed LIME to explain a deep learning model’s prediction
for diabetic retinopathy from retinal fundus photographs. LIME identified the most relevant
image regions (e.g., microvascular abnormalities, hemorrhages) influencing the model's

decision, aiding ophthalmologists in understanding its reasoning.

A research project by (Jiang et al., 2021) developed an explainable Al system for
personalized treatment recommendations for lung cancer. The system combined a deep

learning model with SHAP to explain how factors like a patient's genomics and medical
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history contributed to the suggested treatment plan. This transparency empowered

oncologists to discuss treatment options with patients in a more informed way.

Investigators in a study by (McKelvey et al., 2018) built an explainable machine-learning
model to predict hospital readmission risk for heart failure patients. The model used rule-
based explanations, highlighting key factors like a patient's medications and lab test results
that contributed to the predicted risk. This information helped healthcare providers tailor

discharge plans and interventions for patients at higher risk.

These examples showcase how explainable Al can be implemented in various healthcare
applications, fostering trust, improving communication, and ultimately leading to better

patient care.

Challenges faced by XAIl: While Explainable Artificial Intelligence (XAI) holds great
promise for healthcare, it faces several challenges that must be addressed to realize its full
potential. These challenges, along with future directions for XAl in healthcare applications,

include:

Developing Effective Explanations: Creating explanations for complex deep learning
models is inherently difficult due to their high dimensionality and non-linear nature.
Ensuring that these explanations are both accurate and understandable is a major hurdle.

Tailoring Explanations for Diverse Users: The level of detail and technical complexity
required in explanations varies between user groups. Clinicians may need in-depth insights
into model mechanics and evidence for predictions, while patients often require simplified

and accessible explanations. Striking this balance is challenging but critical.

Regulatory Ambiguity: The regulatory frameworks governing Explainability in Al-driven
healthcare systems are still evolving. Guidelines for what constitutes adequate Explainability
are often vague, leading to uncertainty in compliance and deployment.

Scalability of XAl Solutions: Implementing explainable systems at scale, particularly in
diverse and resource-constrained healthcare settings, remains a logistical and technical

challenge.

Bias and Fairness: While XAl can help identify biases in models, ensuring that these biases
are effectively mitigated and explained transparently adds another layer of complexity.
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Addressing these challenges will be pivotal in making XAl a cornerstone of trustworthy and

effective Al applications in healthcare.

2.5 Related Works

Search Strategy: Our initial information retrieval process focused on identifying relevant
databases, drawing from both general scientific publishing platforms and domain-specific
medical imaging resources. For general academic research, we utilized national repositories
such as the National Academic Digital Repository of Ethiopia (NADRE), alongside globally
recognized platforms like PubMed, ScienceDirect, arXiv, and databases from prominent
academic publishers such as Frontiers, Hindawi, and Taylor & Francis.

To ensure comprehensive coverage of domain-specific content, particularly in medical
imaging and related fields, we also explored specialized resources including ResearchGate,
the ACM Digital Library (targeting computer science-related studies), and IEEE Xplore for
cutting-edge publications in engineering and technology. These sources provided a robust
foundation for retrieving highly relevant and diverse publications to support our research

objectives.

To streamline the literature review process, we developed a search string comprising
keywords closely aligned with our research topic. Examples of these keywords include
"interpretable deep learning,” "lung cancer detection,” "lung cancer classification,” "CT
scans," “Early stage cancer classification” and "explainable Al (XAI)." Boolean operators
such as AND, OR, and NOT were incorporated into the search string to refine and target the

retrieval of the most relevant articles.

In addition to traditional database searches, we leveraged Research Rabbit, a web-based
application specifically designed to optimize literature review for researchers, including
students and academics. Research Rabbit functions as a citation-based literature mapping
tool, utilizing citations and reference networks to establish connections between research
articles. This approach significantly enhances the exploration of related works, enabling a
more efficient and comprehensive review of relevant literature. The combination of well-
constructed search strings and advanced tools like Research Rabbit ensured a thorough and

systematic information retrieval process.

Inclusion/Exclusion Criteria: We established clear criteria for selecting relevant articles

for our review. This involved focusing on recent advancements (within the past five years),
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ensuring articles were published in peer-reviewed journals or reputable conference
proceedings, selecting studies that directly address issues related to our study, and
considering only studies written in English. These criteria helped us ensure that the literature
we reviewed was both current and of high quality, providing a solid foundation for our

research.

Selection Process: We employed a two-stage article screening process, consisting of title
and abstract screening followed by full-text evaluation. Title and Abstract Screening: In the
first stage, the titles and abstracts of the retrieved articles were evaluated. Articles deemed
irrelevant to the research topic based on their titles and abstracts were excluded. This initial
screening helped to efficiently narrow down the number of articles for further consideration.
Full-Text Evaluation: Articles that passed the initial title and abstract screening stage
proceeded to a more in-depth evaluation. Full-text versions of these articles were obtained
and thoroughly examined to assess their alignment with the research question, methodology,
and inclusion/exclusion criteria. This comprehensive analysis ensured the selection of high-
quality and directly relevant studies for further analysis. By implementing this rigorous
selection process, we were able to ensure the relevance and quality of the literature included

in our review.

After completing the initial steps, we critically evaluated the selected articles to assess their
quality, relevance, and methodological rigor. Key aspects considered included the following:
one, Study Design: Whether the study was retrospective or prospective. Two, Dataset
Characteristics: Size, source, and type of CT scans used. Three, Deep Learning Model
Architecture: The specific architecture employed and any interpretability techniques
utilized. Fourth, Evaluation Metrics: Measures such as accuracy and interpretability metrics.
Five, Strengths and Limitations: An analysis of the strengths and limitations of the research

presented.

Finally, we used the reference management software, Mendeley, to organize and manage our
retrieved articles and references. This ensured a systematic and efficient approach to
handling the literature, facilitating a thorough and well-structured review process.

As we have discussed previously, DL algorithms have extensive applications in healthcare,
especially in informed clinical decision making which is when patients are able to weigh the
pros, disadvantages, limitations, alternatives, and uncertainties of the clinical care they are
considering for a certain disease or condition. There are a lot of successful applications of
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DL in detecting and classifying lung cancer in terms of performance but most of them are
done on 2D images or by converting the CT-Scans to ‘jpeg’ and ‘png’ formats. Some of
them include (Sori et al., 2019), (B. C. & K. B., 2023), (Shafi et al., 2022), (Tandon et al.,
2022), (Bushara & Kumar, 2022), (Ramana et al., 2022), and many more. Since this research
study used 3D CNNs for the raw 3D medical image data we will focus on studies that

employed 3D deep learning models, let’s see some of them next.

A research work on Jiang et al., (2022) demonstrated the effectiveness of a deep learning
model for accurate and fast lung cancer prediction using CT scans. The model comprised
three stages of work. The first one is lung nodule detection, which is identifying potential
cancerous nodules. The second is the Benign vs. Malignant classification that is
differentiating between Benign and Malignant nodules. The third is false positive reduction,
which is filtering out non-cancerous nodules. The researchers employed various network
architectures and loss functions for optimal performance. Notably, they introduced "Nodule-
Net," a detection network combining U-Net and RPN (Region Proposal Network) for

improved accuracy in lung nodule detection.

Causey et al., (2022) proposed "Deep Screener,” a deep learning model for predicting lung
cancer using volumetric CT scans. It combines CNNs for whole-image analysis and
leverages Spatial Pyramid Pooling and 3D convolutions to capture spatial information at
various scales, enhancing feature extraction. Trained on carefully curated datasets, Deep
Screener achieved promising results on an independent test set, demonstrating its potential

as a valuable tool for lung cancer detection and risk prediction.

A study conducted by Essaf et al., (2020) investigated the categorization and identification
of CT lung images using convolutional neural networks. It used four different consecutive
stages of work steps: (1) Using the database's description file CT images of malignant
pulmonary nodules and normal nodules were located; (2) Using the maximum inter-class
variance method CT image was Segmented to create a binary image; (3) A suitable CNN
was designed; (4) CCN was trained and CT image of malignant lung nodules were classified.
This study employed the LIDC dataset and the study's findings indicated that a CNN received
the processed CT scans as input for both training and recognition. 95.85% was the average

classification accuracy rate following six-fold cross-validation.
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Sun et al., (2020) utilized a two-stage approach to classify lung nodules using Generative
Adversarial Networks (GAN) and 3D CNN. In the first stage, the model employed transfer
learning based on Deep Convolutional Generative Adversarial Networks (DCGAN) to
preliminarily classify pulmonary nodules. The GAN model generated a dataset similar to the
original data, which was then used to pre-train the nodule detection network based on
AlexNet. The pre-trained network is fine-tuned using the original data to obtain a neural
network with high accuracy. In the second stage, a 3D CNN was introduced to remove false
positives in the classification process. They stated that this two-stage approach leveraged the
strengths of GAN for data generation and transfer learning in the first stage, followed by the
use of 3D CNN for accurate classification and false positives removal in the second stage.
The accuracy achieved in the first stage is 94.50% and the highest accuracy registered
because of the removal of false positives is 95.30%.

Bao et al. proposed a simple residual network for lung nodule classification. First, they
suggested employing the Self-Attention technique to identify global features. Subsequently,
a module called Inception-like was presented to extract multi-scale local features the
identified local features were regarded as complementary parts of global features with
residual connection. By combining the self-attention mechanism for global feature detection
and the inception-like module for multi-scale local feature extraction, the network was able
to effectively capture both global and local features essential for accurate lung nodule
classification. The network achieved an AUC of 96.07%, indicating its high discriminatory
power in distinguishing between benign and malignant lung nodules. The accuracy of the
model was reported as 90.45%, and the precision and recall values were 0.8993 and 0.9015,

respectively.

Lin et al., (2020) designed 3D CNNs with shortcut connections to improve lung nodules
classification. As 3D CNN has many parameters, which leads to low model efficiency, they
proposed a VGG-based 3D residual connection network. The VGG+ResCon network
utilizes shortcut connections to improve the classification of lung nodules in CT images by
addressing the issue of gradient disappearance, simplifying the learning process, and
accelerating the convergence rate of the network. Additionally, the use of shortcut
connections in the VGG+ResCon network enables the model to mine vertical information

from tumor CT images more effectively.
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This helps in capturing important spatial features of pulmonary nodules in 3D CT data,
leading to improved accuracy in distinguishing benign from malignant nodules. The authors
stated that the proposed methodology was evaluated on the LUNAL6 dataset, achieving the
best recall, precision, specificity, and f1-score of 92.48%, 93.62%, 96.83%, and 93.04%,

respectively.

Table 2.1 summarizes the aforementioned works of literature. We included research gaps in

each literature even though we focused on the interpretability aspect of these models,
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Table 2.1 Summary of Related Works of DL on Lung Cancer

(Author, Problem Investigated Approach Results Gaps found
year) Followed Achieved
(Jiang et Lung region segmentation; LIDC IDRI,and | FROC =0.876 No interpretation of the results
al., 2022) candidate region feature extraction; LUNA16 (Free-Response The research primarily addresses detection and
lung nodule recognition and Receiver classification at a single time point, lacking insights
classification. Operating into the progression of lung nodules over time.
Nodule net for lung nodule Chir:iit/e;)'snc
detection (3D U-Net).
(Causey et Deep screener based on spatial LIDC, DSB2017, | Accuracy = 78.2 High False Positive Rates
al., 2022) pyramid pooling with 3D LUNAL6, and AUC =85.8 No interpretation of the results
(Essaf et {The CT scans were segmented LIDC IDRI  {Accuracy = 95.85 No interpretation of the results
al., 2020) using the Otsu method, and the AUC = 82.16
features were extracted using CNN
then classified the CT scan images
as benign and malignant.
(Sunetal., Generative Adversarial Networks LIDS Accuracy=94.50 No interpretation of the results
2020) {(GAN) and 3D CNN
(Bao et al., Simple residual network for lung LIDC AUC =96.07 The strength of the model's
2020)  nodule classification. Self-Attention Accuracy = 90.4 No interpretation of the results

technique to identify global features

Precision = 89.93
Recall = 90.15

44



(Author, Problem Investigated Approach Results Gaps found
year) Followed Achieved
(Linetal.,, VGG-based 3D residual connection LUNA16 Accuracy = 93.6 | = No interpretation of the results

2020)  network, called VGG+ResCon

Precision = 93.6
Recall = 92.48
Specificity = 96.83
F1-score = 93.04

The studies reviewed highlight significant advancements in lung nodule detection and classification using deep learning approaches, yet they reveal
notable gaps that require further exploration. A common limitation across these studies is the lack of result interpretation, which is crucial for
clinical applicability and understanding the decision-making process of the models. Additionally, most of the research focuses on single time-point
detection, neglecting the progression and temporal changes of lung nodules, which are vital for early-stage cancer management. High false-positive
rates, as observed in some studies, further hinder the reliability of these models in practical settings. Lastly, while various methodologies
demonstrate impressive accuracy and performance metrics, the strengths and limitations of these approaches are often insufficiently analyzed,

leaving room for improvement in model transparency and robustness. These gaps underscore the need for more comprehensive and clinically

interpretable models that incorporate temporal analysis and address reliability issues effectively.
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CHAPTER THREE
DESIGN AND METHODS

3.1 Overview

This chapter comprehensively details the materials and methods utilized throughout the deep
learning (DL) workflow. It encompasses key stages such as data acquisition, where we
gathered the necessary datasets for our study, and pre-processing, which involves cleaning
and preparing the data to ensure optimal model performance. The chapter also delves into
the design of the interpretable deep learning model architecture, highlighting how we
structured the model to enhance its Explainability while maintaining high performance.
Furthermore, it covers the training process, outlining the techniques and parameters used to
train the model effectively. Lastly, the chapter discusses the evaluation metrics employed to
assess the classification performance, ensuring that the model's predictions are both accurate
and reliable. Each step in this workflow is meticulously crafted to build a robust and

interpretable DL model, capable of delivering significant insights.

3.2 Proposed architecture

This study explored the performance of four 3D CNN architectures:

1) Baseline Model: A simple 3D CNN architecture comprising a series of convolutional
layers, max-pooling layers, and fully connected layers. This model served as a
baseline for comparison and evaluation.

2) 3D AlexNet-based Model: An adaptation of the well-known 2D AlexNet architecture
to the 3D domain. This model incorporated 3D convolutional and pooling layers,
mimicking the sequential structure of the original AlexNet.

3) Proposed 3D CNN Model:

Architecture: Input; 3D CT scan patches (e.g., 64x64x64 voxels). Convolutional
Layers; Multiple 3D convolutional layers with varying filter sizes (e.g., 3x3x3, 5x5x5) and
depths to extract features at different scales. Inception Modules; Incorporate parallel
convolutional layers with different filter sizes (e.g., 1x1x1, 3x3x3, and 5x5x5) to extract
features at multiple scales simultaneously. Pooling Layers; 3D max-pooling layers to
downsample feature maps and reduce computational complexity. Dropout Layers to

prevent overfitting and improve model generalization. Fully Connected Layers; Multiple
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fully connected layers classify the extracted features into benign or malignant categories.
Rationale: Inception modules enhance feature extraction by capturing information at
multiple scales, improving the model's ability to detect subtle variations in nodule
characteristics. Deeper convolutional layers allow the model to learn more complex and
abstract features from the input data, and Dropout layers help to prevent overfitting by
randomly dropping out neurons during training, reducing the model's reliance on specific

neurons and improving its generalization ability.

4) 3D CNN with CBAM: This model incorporates the Convolutional Block Attention
Module (CBAM) into the proposed 3D CNN architecture. CBAM consists of two
attention modules: Channel Attention Module: Selectively emphasizes the most
informative feature channels. Spatial Attention Module: Selectively emphasizes the
most informative spatial locations within the feature maps. By integrating CBAM,
the model can dynamically refine feature maps, focusing on the most relevant

information for classification and potentially improving performance.

3.3 Materials

Considering that the core components of Al models include the platform for executing our
code, the data used for training, and the diverse libraries and packages employed for various
operations, we explore these aspects in the following subsection. This examination covers
the computational environment and hardware specifications, the sources and preprocessing
steps of the training data, and the specific software tools and frameworks that facilitate the
implementation and optimization of our models. Understanding these fundamental elements

is crucial for developing robust and efficient Al systems.

3.3.1 Platform

This study was conducted entirely on Kaggle and Google Colab, both cloud-based platforms
that enable running Python code directly within a web browser. These platforms are
particularly useful for machine learning, data analysis, and other computationally intensive
tasks, as they eliminate the need for a high-performance local machine. One of their standout
features is access to hardware accelerators, specialized processors designed to significantly
enhance computation speed. Both Kaggle and Colab offer two primary types of hardware

accelerators:
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1) Graphics Processing Units (GPUs): GPUs excel at parallel processing, making them
ideal for tasks such as training deep learning models.
= Kaggle: Provides GPU options like GPU T4 x 2 and GPU P100, along with
a Tensor Processing Unit (TPU) type called TPU VM v3-8.
= Colab: Offers a variety of GPUs, including Tesla A100s, V100s, and T4s.
Each GPU type has unique capabilities and performance levels.

2) Tensor Processing Units (TPUs): TPUs are custom-designed by Google specifically
for machine learning tasks. They often outperform GPUs for particular workloads
but may not be suitable for all types of computations.

The availability of these accelerators makes both platforms invaluable for efficiently

handling resource-intensive processes in machine learning and related fields.

3.3.2 Data

Data can be categorized as either local or public based on its scope, accessibility, and origin.
Public data refers to information that is freely accessible and typically provided by
government agencies or public institutions for general use. In contrast, local data pertains to
information specific to a particular geographic area, often gathered and maintained by local

authorities or organizations for regional purposes.

Only 20% of lung cancer cases are reported in low- and middle-income countries. In
Ethiopia, approximately 1.5% of all cancer cases involve the lung. However, the absence of
a nationwide cancer registry in Ethiopia means that precise data on clinical history,
histopathology, molecular characteristics, and risk factors for lung cancer remain unavailable
(Gebremariam et al., 2021).

We chose to leverage publicly available datasets curated for research purposes. Among the
datasets we explored were LIDC-IDRI, LUNA16, Kaggle Data Science Bowl, and
LUNAZ22-ISMI. After conducting thorough exploratory data analysis on these and other
additional datasets, we selected the most recent and computationally inexpensive dataset for
our study: the LUNA22-ISMI dataset. This selection was based on its suitability for our
research needs and its ability to provide relevant and high-quality data for our deep learning

model.

The LUNA22-1ISMI (Lung Nodule Analysis 2022 - Intelligent Systems in Medical Imaging)

challenge was an educational initiative centered on classifying lung nodules in chest CT
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scans. Its primary goal was to offer a platform for researchers and students to develop and
test their algorithms for predicting nodule malignancy and classifying nodule types.
Participants were provided with a dataset containing 1.7 GB of compressed files with 3D
patches of nodules (Venkadesh & Jacobs, 2022). This challenge aimed to advance the field
of medical imaging by encouraging innovative approaches and enhancing the understanding

of lung nodule classification.

The LUNA22-ISMI dataset consists of 1176 lung nodule CT scan patches derived from the
LIDC-IDRI dataset, specifically curated for the educational LUNA22-1SMI challenge. This
dataset includes 3D patches of nodules, each sized 128 x 128 x 64 in X, y, and z dimensions.
The nodules are consistently positioned in the center of each 3D patch. The dataset
incorporates labels from at least three out of four radiologists, following the LUNA16
criteria, resulting in a total of 1186 labeled nodules. Additionally, the dataset provides
radiologist scores for nodule type and malignancy, offering valuable information for
developing and testing algorithms in nodule classification and malignancy prediction
(Venkadesh & Jacobs, 2022).

The images are formatted in a compressed “nifti” format as “.nii.gz”. The labels for each

nodule can be found in the given Numpy file named “LIDC-IDRI_1176.npy ”.

3.3.3 Software

To develop deep learning models, specialized software libraries and frameworks are
essential. We utilized various software tools for data pre-processing, deep learning model
development, and model interpretation. Additionally, we employed ITK-SNAP for data

exploration and medical image viewing.
Data exploration and Data pre-processing:

ITK-SNAP: is an interactive software application that allows users to manually identify
anatomical regions of interest and navigate through three-dimensional medical images, such
as CT scans. For the data preprocessing step, we utilized various Python libraries for

exploratory data analysis of different datasets. Let's take a look at them one by one.

Pydicom: Pydicom is a free, open-source Python library designed to handle DICOM (Digital
Imaging and Communications in Medicine) files. It offers a wide range of functionalities,

making it a valuable tool for medical imaging tasks. Key features include Reading DICOM

49



Files: PyDicom enables access to and parsing metadata from medical images, including
patient information, acquisition parameters, and modality details. Writing DICOM Files:
The library allows users to create and modify DICOM files, facilitating data sharing and
archiving. Processing Medical Images: PyDicom provides basic tools for image processing

on DICOM data, supporting further analysis (Mason et al., 2023).

NiBabel: Nibabel is a free and open-source Python library that provides tools for working
with various neuroimaging data formats. It serves as a bridge between different
neuroimaging file formats and analysis tools, streamlining the workflow. Key functionalities
of Nibabel include:

Loading and saving neuroimaging data: Nibabel supports a wide range of neuroimaging
file formats, such as fMRI (NIFTI, MGH), EEG (Brain Vision), and PET (ANALYZE). Data
can be easily loaded from these formats for further analysis in Python. Data manipulation:
Nibabel offers basic functionalities for manipulating neuroimaging data, such as cropping,
masking, and reorientation. Interaction with other neuroimaging libraries: Nibabel
seamlessly integrates with other popular neuroimaging libraries in Python, enabling a more
comprehensive analysis pipeline (Brett et al., 2024). dicom2nifti: Python library for
converting DICOM to Nifti format. dicom2nifti is a free and open-source Python library
created to facilitate the conversion of DICOM files to the Nifti format. Additionally, we have
utilized various other Python packages and modules for different computational tasks.

OS: The module offers a robust set of functions for interacting with the operating system. It
enables Python programs to handle tasks such as file and directory management, process
control, and environment variables. Shuttle: The shuttle module in Python provides a
collection of high-level functions for working with files and collections of files. It offers
functionalities that go beyond the basic file operations available in the built-in OS module,
simplifying common tasks like copying, moving, and removing files and directories.
Numpy, short for Numerical Python, is a fundamental library for scientific computing in
Python. It provides a powerful set of tools for working with multidimensional arrays and
matrices, along with mathematical functions for efficient numerical data operations. Pandas:
is a powerful and popular library in Python that is specifically designed for data
preprocessing and manipulation. It excels at working with tabular data, similar to
spreadsheets or SQL tables, making it a reliable and useful tool for data scientists and

analysts.
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Scipy, pronounced "Sigh-pi,” is another cornerstone library in the scientific Python
ecosystem. Building on top of NumPy, SciPy extends its functionality by providing a vast
collection of algorithms and tools for various scientific computing tasks. We used it for data
augmentation and other Numpy array operations. Matplotlib is a fundamental library for
creating static, animated, and interactive visualizations in Python. It offers a versatile and
user-friendly toolkit for generating various plot types to explore and communicate data

insights effectively.
Deep learning model development:

TensorFlow: It is a free and open-source software library that was developed by Google for
numerical computation and large-scale learning using deep learning. It provides a flexible
architecture for efficiently defining, training, evaluating, and deploying machine learning
models. Key functionalities of TensorFlow include Dataflow Programming; TensorFlow
utilizes dataflow graphs to represent computations. These graphs define the relationships
between data elements and the operations performed on them. This approach facilitates
efficient execution on various hardware platforms, including CPUs, GPUs, and TPUs.
Automatic Differentiation: TensorFlow offers automatic differentiation capabilities, which
are crucial for training machine learning models. It calculates the gradients of a function
concerning its inputs, allowing optimization algorithms to effectively adjust the model's
parameters. Tensor Operations: A core concept in TensorFlow is the "tensor,” a
multidimensional array of numerical data. TensorFlow provides a rich set of operations for
manipulating and transforming tensors, forming the building blocks for machine learning
algorithms. Pre-built Libraries and Tools: TensorFlow offers a wide range of pre-built
libraries for specific tasks like natural language processing, computer vision, and
recommender systems. Additionally, it provides tools for model deployment, serving, and
visualization (TensorFlow, 2019). Keras: Keras is a high-level API designed to simplify the
creation of deep learning models, operating atop frameworks like TensorFlow. It provides a
user-friendly interface for building, training, and deploying deep neural networks. Key
functionalities of Keras include Model Building Blocks: Keras offers pre-built layers for
deep learning models, such as convolutional layers (CNNSs) for image processing, recurrent
layers (LSTMs) for sequence data, and dense layers for fully connected networks.
Sequential vs. Functional API: Keras supports two main approaches for constructing deep

learning models:
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Sequential API: Ideal for building linear layer stacks, often used in basic deep learning
models. Functional API: Allows for complex model architectures with branching, merging,

and custom layers, offering more control for advanced tasks.

Loss Functions and Optimizers: Keras includes various pre-defined loss functions (e.g.,
mean squared error, categorical cross-entropy) for evaluating model performance during
training and optimizers (e.g., gradient descent variants) for adjusting model parameters based
on the loss function. Ease of Use: Compared to directly using TensorFlow, Keras makes
deep learning development easier with its intuitive APl and focus on essential model-

building components (Keras, 2019).

3.4 Methods

Our methodological approach comprised four fundamental stages, each of which is

elaborated upon in the subsequent subsections.

3.4.1 Exploratory Data Analysis

The initial phase of our study involved conducting a thorough exploratory data analysis
(EDA) on potential datasets. This process began with data acquisition and focused on
examining the characteristics of the data, including the specific attributes of medical imaging
data and the labeling methodologies used. After visualizing the CT scan images with ITK
Snap software, we utilized the Nibabel library to access the pixel data and retrieve the header
information. Below is an example of a typical histogram representing the distribution of pixel

values, also known as Hounsfield units (HU), for a single 3D patch of a nodule.
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Figure 3.1 Histograms of Pixel values of a single 3D patch of nodule.
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As we can see from the above figure, the pixel values for this sample CT scan range from
more than +1000 to less than -3000, and each patch has a size of 128x128x64 in the x, y, and
z directions. After going through all pixel values of each 3D nodule patch, we have found
that the pixel values range from (-3,024.0) to (+6,054.0).

o 20 40 60 80 100 120

Figure 3.2 A CT scan slice of a sample 3D patch nodule
The labels were obtained from the “LIDC-IDRI1_1176.npy” file. This file stores information
for each nodule in a structured format using Python dictionaries. The file contains a NumPy
array, where each element represents a single nodule. Each nodule dictionary includes the

following key-value pairs relevant for label extraction and preprocessing:

{
'SeriesInstanceUID':
'1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222365663678666836860",

'VoxelCoordX': 45,

'VoxelCoordY': 211,

'VoxelCoordz': 77,

'Diameter': [6.97167141, 6.97167141, 7.34878692, 5.94228451],

'Texture': [5, 5, 5, 5],

'Malignancy': [4, 2, 4, 21,

'Calcification': [6, 6, 6, ©],

'Filename':
'1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222365663678666836860 45 21
1 77 0000.nii.gz'

}

Where, SeriesinstanceUID: A distinctive identifier uniquely assigned to a specific CT scan
series for each patient, ensuring accurate tracking and referencing of the imaging data,
VoxelCoordX, VoxelCoordY, VoxelCoordZ: These denote the 3D coordinates pinpointing

the exact center of the nodule within the CT scan volume, facilitating precise spatial

localization for further analysis, Diameter: An array containing measurements that specify
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the nodule’s diameter across different axes, providing insights into its size and potential
growth patterns, which are critical for assessing malignancy risks, Texture (1-5): A
categorical variable that describes the internal radiographic solidity of the nodule, ranging
from non-solid (1) to fully solid (5). This attribute is crucial in distinguishing between
various types of nodules and aiding radiologists in determining potential malignancy,
Malignancy (1-5): A categorical variable reflecting the estimated likelihood of malignancy,
assuming the patient is a 60-year-old male smoker. This scale ranges from 1, indicating a
very low probability, to 5, which represents a high suspicion of cancer. It serves as a vital
input for risk stratification and clinical decision-making, Calcification (1-6): Another
categorical variable indicating the presence and degree of calcification within the nodule.
Calcification patterns can provide critical clues about the nature of the nodule, whether
benign or malignant, and guide further diagnostic steps (Venkadesh & Jacobs, 2022).

This process involves transforming the original five-class malignancy labels into a binary

classification problem, simplifying the model's task. Here's a breakdown of the steps:

Label Grouping: Benign: Labels 1 and 2 are combined to represent nodules with low
malignancy suspicion. Malignant: Labels 3, 4, and 5 are combined to represent nodules with
high malignancy suspicion, Median Score Calculation: A median score is calculated from
the "malignancy" key-value pair to represent the overall malignancy assessment,
Binarization: Nodules with a median score below three are classified as benign. Nodules
with a median score of 3 or above are classified as malignant. This approach aims to
consolidate potentially subjective assessments from multiple radiologists into a single,
representative label for each nodule. By simplifying the classification problem, the model

can focus on the key distinction between benign and malignant nodules.

However, this classification process revealed a class imbalance within the dataset. Out of the
1,176 labeled 3D nodule patches, 380 were categorized as benign, and 796 belonged to the
malignant class. To address this imbalance and ensure the model learns effectively from both
classes, appropriate data augmentation techniques were implemented during the

preprocessing stage.

3.4.2 Data Preprocessing

In this stage, we have done data splitting and employed some preprocessing techniques on

the dataset. To prevent data leakage, we split the dataset before augmentation.
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Data Splitting: we divided the dataset into 80% for training, 10% for validation, and 10%
for testing to ensure proper model evaluation. The training set contained 304 benign and 637
malignant 3D CT scan patches of nodules. The validation set consisted of 38 benign and 79
malignant 3D CT scan patches used for testing the model on unseen data during training.
Finally, the test set included 38 benign and 80 malignant 3D CT scan patches used to assess
the model’s performance on completely unseen data after training. This split ensured that the
model was trained on a representative data portion, evaluated to avoid overfitting, and tested

for a comprehensive performance review.

Data Augmentation: Data Augmentation was used to balance the original imbalanced
dataset and create an equal number of 3D CT scan patches for both classes. Additionally, to
improve the model's generalizability and prevent overfitting during training, data
augmentation techniques were employed on the training set. This process artificially
increases the training data by introducing controlled variations of existing samples,
enhancing the model's ability to learn features robust to these variations. Several
augmentation techniques were implemented, including Geometric Transformations:
Flipping, Scaling, Translation, and Rotation. Noise Addition: Noise addition, Brightness
variation, Contrast variation, Elastic deformation. Filtering: Median filtering. A combination
of two or three technigques was also applied. All of these techniques were implemented using

the SciPy library.

But even if we employed up to ten augmentation techniques, we only used the data that we
have gotten from only seven techniques. This is done because of a shortage of RAM during
training. We encountered RAM out of memory or “your notebook tried to allocate more
memory than is available. It has restarted.” during training. The seven augmentation

techniques used are as follows with their visualizations.

Flipping, a type of geometric transformation, involves flipping 3D nodule patches along two
randomly selected axes out of the three dimensions. This mimics potential variations in
nodule orientation within lung scans. Scaling changes the image size by a random factor
between 0.8 and 1.2 along each axis independently. Translation shifts the image by a random

amount within the range of -10 to 10 pixels along each axis.

55



Noise addition: Adds Gaussian noise to the image with a random standard deviation between
0.05 and 0.2. Contrast adjustment: Applies a shear transformation to the image with random
shear factors between -0.2 and 0.2 along each axis. Brightness adjustment: Adjusts the
image's brightness by a random factor, shifting the intensity values of a 3D image by -30 to
20 to make it brighter or darker. Elastic distortion (spline filtering): Introduces random,
localized deformations to the 3D nodule patches, mimicking slight anatomical variations or
scanner imperfections that might occur in real-world CT scans, enhancing the model's
resilience to such artifacts. The SciPy library offered the essential functionalities for
applying these data augmentation techniques to the pixel intensity arrays of the 3D nodule
patches. Figures 3.3 and 3.4 demonstrate the impact of these augmentation techniques on

sample nodule slices, showing how the original pixel intensity values were altered.

60
80
Loo

L20

(o] 20 40 60 80 100 120 0 20 40 60 80 100 120

Original Flipped
(a) Randomly Flipped nodule patch CT scan slice

20
40
60
80
100 ¢

120

o 20 40

80 100 120

Original Scaled
(b) Randomly Scaled nodule patch CT scan slices and the size changed to (104, 104, 52)

56



Slice 2 Slice 3 Slice 4

Slice 1

Original

Slice 2 Slice 3 Slice 4

Translated

(c) Randomly translated nodule patch CT scan slices

Slice 5

e e Ee
— e

Slice 5

IIIIIIIII--..-- llllllllnn--.-- |

Figure 3.3 The effect of Flipping, Scaling, and Translation on a sample CT scan of a

nodule Patch from the Luna22 dataset.
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(c) Randomly Contrast adjusted CT scan slice and its pixel intensity values
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Figure 3.4 The effect of noise addition, contrast and brightness adjustment, and elastic

distortion for augmentation (The pixel intensity values are shown to depict how the 3D

image is changed).

Following data augmentation, we applied two essential preprocessing steps commonly used

for chest CT scans before training a deep-learning model:

Windowing: Building on the established understanding of Hounsfield Units (HU) for

representing CT scan voxel intensities (as discussed in Chapter 2), we applied specific data

preprocessing steps to the lung nodule patches in this dataset. The raw HU values in our

dataset range from -3024.0 to +6054.0. To focus on the lung parenchyma, the region of

interest for nodule classification, we clipped the voxel intensities based on typical HU ranges

for different tissue types in chest CT scans.
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We employed a clipping threshold of -1000 HU for air (to filter out background noise) and
+400 HU for bone (to exclude intensities that could represent unrelated anatomical structures
or image artifacts). This clipping process ensures that VVoxels with intensities above the bone
threshold are set to 400 HU. Voxels with intensities below the air threshold are set to -1000
HU. These adjustments allow us to focus on the relevant data for lung nodule classification,

improving the model’s ability to interpret the CT scan images effectively.

Normalization (Min-Max Scaling): Following data augmentation, the other crucial
technique used was normalization. This step is applied to the lung nodule patches before
feeding them into the deep-learning model for training. Normalization aims to scale the pixel
intensity values within a specific range, promoting numerical stability and improving the
learning process. In this work, we employ a min-max scaling technique combined with zero-

centering. The min-max scaling process is achieved using the following formula:
Volumey,prmaiize = (Volume — HUpin) /(HUpqx — HUpin) 31

Where: volume represents the original voxel intensity array of the lung nodule patch. HUmin
and HUmax denote the minimum and maximum HU values encountered within the 3D patch,
respectively. This formula effectively scales each voxel intensity within the original range
(HUmin to HUmax) to a new range between -1 and 1. This compressed range facilitates the
learning process for the deep learning model by ensuring all features reside on a similar
scale. By incorporating these data augmentation and preprocessing techniques, we aimed to

create a more robust and generalizable model for lung nodule classification.

Following the preprocessing steps, the 3D lung nodule patches undergo a final resizing stage
to match the input requirements of the chosen deep-learning model architecture. This
resizing process ensures compatibility between the data and the model's expected input

dimensions.

We employ a technique known as spline interpolated zoom (S1Z) for resizing the 3D patches.
SIZ leverages spline interpolation, a mathematical method for creating smooth curves or
surfaces that pass through a set of data points (Zunair et al., 2020). This approach offers
advantages over simpler techniques like nearest neighbor interpolation, which can introduce
artifacts during the resizing process. By using SIZ, we can preserve the fine details and
structural information within the 3D patches, leading to more accurate and robust model

performance.
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After SIZ resizing, the 3D image voxel arrays are transformed into a format that is
compatible with deep learning models. In this study, we utilize NumPy arrays to represent
the preprocessed and resized 3D patches. Each voxel intensity within these arrays is encoded
as a single numerical value, ensuring a standardized representation for model input.
Additionally, binary labels are assigned to each patch, where "0" denotes benign nodules and
"1" indicates malignant nodules. This clear binary labeling scheme is essential for facilitating
the training process in our classification task, enabling the model to effectively distinguish

between benign and malignant cases.

Visualization: During the preprocessing stage, data visualization techniques were utilized
to gain valuable insights into the data distribution, detect potential anomalies, and evaluate
the effectiveness of the preprocessing steps. These visualizations included Histograms To
analyze the distribution of voxel intensities (Hounsfield Units) before and after applying
clipping thresholds; 2D Slice Views To visually inspect individual slices from 3D lung
nodule patches, ensuring that preprocessing steps such as normalization and augmentation
were applied correctly; 3D Volume Renderings: To observe the spatial structure and
placement of nodules within the CT patches, helping to identify any inconsistencies or
artifacts; Comparison Charts: To compare data characteristics before and after
preprocessing, such as changes in intensity ranges or augmented variations; These
visualization efforts ensured the integrity of the data and validated the preprocessing

pipeline's contribution to model readiness.

3.4.3 Deep Learning Model Development and Evaluation

This section addresses the development, training, and evaluation of a deep-learning model
for lung nodule classification in chest CT scans. Deep Neural Networks (DNNSs) have proven
to be powerful tools for automated image analysis, showing impressive performance in
various classification tasks. Given the three-dimensional nature of chest CT data, we chose
to use 3D Convolutional Neural Networks (3D CNNs) to utilize the spatial information
within the volumetric data. Unlike 2D CNNs, 3D CNNs employ 3D kernels or filters to

capture spatial relationships across all three dimensions (depth, width, and height).
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While 3D CNNs offer better performance in processing 3D data, they also come with

increased computational complexity. The figure below illustrates 3D convolution.
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Figure 3.5 3D Convolution (https://www.researchgate.net).

Baseline Model Architecture and Rationale

To create a baseline for comparison and assess the feasibility of using simpler architectures,
we implemented a straightforward 3D CNN model inspired by the work of Zunair et al.
(2020), who explored methods for processing CT scans with 3D CNNs for tuberculosis
prediction. Additionally, we examined the effectiveness of converting well-known 2D CNN
architectures, such as AlexNet and VGG, into 3D CNN variants. Detailed configurations of

these models and their training processes are discussed in the next chapter.

The rationale for this model selection strategy is twofold. First, due to the computational
demands of 3D CNNSs, we evaluated the performance of a relatively simple 3D CNN
architecture as a baseline. Second, we investigated the potential of adapting successful 2D
CNN architectures, like AlexNet and VGG, into the 3D domain for lung nodule

classification.
Model Evaluation

Following the development and training of the deep learning models, a comprehensive
evaluation process was conducted to assess their generalizability and performance on unseen
data. This evaluation utilized a separate testing dataset that the models had not been exposed
to during training. By relying on this independent dataset, we ensured an unbiased
assessment of the model's capability to classify lung nodules accurately, reflecting its
potential effectiveness in real-world scenarios. This rigorous evaluation process is critical

for validating the model's reliability and robustness.
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To comprehensively evaluate the models' performance, we employed a range of established
performance metrics commonly used in binary classification tasks. The following were our

performance metrics:

Accuracy: This is the most fundamental metric, and measures the overall proportion of
correct predictions made by the model. It is calculated as the sum of true positives (TP) and
true negatives (TN) divided by the total number of samples. While offering a basic overview

of model performance, accuracy can be misleading in imbalanced datasets.
Accuracy = (TP +TN)/(TP +TN + FP + FN) 3.2

Precision: measures the model's ability to correctly identify true positive cases. For lung
nodule classification, it represents the proportion of nodules classified as malignant by the
model that are confirmed as malignant by radiologists. A high precision value indicates a
low false positive rate, signifying the model’s effectiveness in minimizing misclassification
of benign nodules as malignant. This metric is particularly important in reducing

unnecessary anxiety and interventions for patients.
Precision = TP /(TP + FP) 3.3

Recall (Sensitivity): Recall, also referred to as sensitivity, highlights the model's capability
to detect all actual positive cases, specifically malignant nodules in lung nodule
classification. It is computed as the ratio of true positives identified by the model to the total
number of actual positive cases in the testing data. As recall value increases false negative
rate decreases, signifying the model's effectiveness in identifying most malignant nodules,

which is critical for ensuring timely and accurate diagnosis in clinical settings.
Recall =TP/(TP + FN) 3.4

F1-Score: The F1-score is the harmonic mean of recall and precision, offering a balance of
a model’s performance by combining recall and precision into a single metric (see equation
3.5). A high F1 score indicates a model that is effective at identifying true positives while

minimizing false positives.
F1 — Score = 2 * (Precision * Recall)/(Precision + Recall) 3.5

AUC-ROC (Area under the Receiver Operating Characteristic Curve): The AUC-ROC

curve is a graphical plot of a model's performance at the given classification thresholds. The
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AUC-ROC score measures the model's overall capability to differentiate among positive

classes.

Confusion Matrix: This is a table that provides detailed information about the total number
of true positives, false positives, true negatives, and false negatives. The confusion matrix
enables to calculation of the performance of the classification model on a test data set.

By using such an evaluation strategy, we test the performance of deep-learning models for
lung nodule classification. These insights can then be used to refine the model architecture,
adjust training parameters, or improve data preprocessing techniques to achieve optimal

performance in this critical medical application.

3.4.4 Deep Learning Model Interpretation Using Grad-CAM:

At this stage, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) to
interpret the predictions made by our DL model in lung nodule classification. Grad-CAM is
a visualization technique designed to provide insights into the regions within a lung nodule
image that most significantly influence the model's classification decision (malignant vs.
benign). This interpretability enhances the model's transparency and allows medical

professionals to better understand the reasoning behind the predictions.

The details of the implementation are elaborated upon in the subsequent chapter. A general

block diagram illustrating the methodology for implementing the proposed model is shown

in Figure 3.7.
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Data Acquisition datasets _ v’ Windowing
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Figure 3.6 Block diagram summary of project work methodology.
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CHAPTER FOUR

IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.1 Overview

This chapter delves into the development and evaluation of four distinct 3D Convolutional
Neural Network (CNN) models for lung nodule classification in chest CT scans. The chapter
provides a detailed description of all four 3D CNN architectures. It outlines the number and
type of convolutional layers, pooling layers, activation functions, and other relevant

components used in the models.

The chapter also an overview of the training process for the 3D CNN models, detailing the
experimental design and hyperparameter configurations (such as Optimizers, Learning Rate
Scheduling Strategy, and Loss Function) employed during training, evaluation, and

subsequent performance optimization.

Finally, the interpretability aspect of the 3D CNN models is presented, emphasizing the
implementation and utility of Gradient-weighted Class Activation Mapping (Grad-CAM).
Grad-CAM is employed to generate visual explanations for the model's predictions by
highlighting the regions within lung nodule images that most significantly influence the

classification decision (malignant vs. benign).

4.2 Preprocessing Techniques

We defined various functions for preprocessing, which include:

Read_nifti_file (filepath): Reads a Nifti file containing a 3D volume and returns the 3D
volume data. windowing_and_normalize (volume): Performs windowing to limit intensity
values within a specific range and normalizes the volume intensities to a defined range (e.g.,
-1to 1). It returns the windowed and normalized volume. Resize_volume (img): Resizes the
volume to the desired dimensions (e.g., 64x64x64) along the X, y, and z axes, returning the
resized volume. Process_scan (path): Reads a Nifti file using read nifti_file, performs
windowing and normalization using windowing_and_normalize and resizes the volume

using resize_volume. This function returns the processed volume.

Preprocessing (volume, label): Adds a channel dimension to the volume to ensure

compatibility with deep learning models, returning the modified volume and its
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corresponding label. save_numpy (volume, path, filename): Saves a NumPy array
representing the volume to a specified file path. save niftifile (volume, path, filename):

Converts a NumPy array to a Nifti file and saves it to a specified file path.

plot HU (volume, title="): (Function for visualization - not core processing) Plots the
histogram of Hounsfield Units (HU) for a given volume, aiding in the visualization of the

voxel intensity distribution.

To prevent data leakage, we split the data into training (80%), validation (10%), and test
(10%) sets before augmentation. We performed data augmentation on the training set to

address data imbalance and mitigate overfitting issues.

Labeling and Consistency across Datasets:

In the final step of data preparation, we assigned binary class labels to each case: 0 for benign
(cancer-negative) cases and 1 for malignant (cancer-positive) cases. This consistent labeling
approach was applied across all training, validation, and ensuring uniformity throughout the
dataset. By maintaining this consistency, we ensured that the model’s performance could be
reliably evaluated, facilitating an accurate assessment of its predictive capabilities and its
ability to distinguish between benign and malignant lung nodules.

To ensure transparency and reproducibility, the code for all the aforementioned techniques
is provided in Appendix E. This appendix includes detailed code for various stages, such as
data acquisition, binary classification (benign vs. malignant), dataset splitting (training,
validation, testing), data augmentation, exploratory data analysis, and visualization.
Additionally, it covers model building and training, as well as model interpretation. By
providing this comprehensive code repository, we aim to facilitate the replication of our

work and support further research in this field.

4.3 Model Architectures Used

This section outlines the development process of the proposed 3D Convolutional Neural
Network (CNN) models for classifying lung nodules in chest CT scans. To construct these
models, we utilized the Keras Functional API, which offers significant flexibility in handling
complex architectures. The Keras Functional API is well-suited for creating deep learning
models with non-linear topologies, shared layers, and multiple inputs and outputs, making it
ideal for designing sophisticated models that can tackle a range of tasks, including 3D image
classification. This approach allows for greater customization and scalability compared to
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the Keras Sequential API, which is more limited in structure. The flexibility of the Functional
API enables us to fine-tune the architecture, optimize the layers, and improve model
performance in challenging medical image classification tasks (Fchollet & Team Keras,
2019).

The development process involved three key steps:

Define input to the model: This step included defining the model's input layer and
specifying the dimensions of the input tensor, which represents a 3D lung nodule patch

extracted from a chest CT scan.

Define a set of interconnected layers on the input: A series of interconnected layers were
defined to build the core architecture of the model. These typically included convolutional
layers for feature extraction, pooling layers for dimensionality reduction, and activation
functions for introducing non-linearity. The specific types and configurations of these layers

varied based on the chosen architecture.

Define the model using the input and output layers: This involved finalizing the model

structure by connecting the input and output layers.

In this study, we employed four distinct 3D CNN architectures for the classification of lung
nodules. The first architecture served as a baseline model, inspired by the work of Zunair et
al. (2020), who applied 3D CNNs for tuberculosis prediction from CT scans. Their research
provided a valuable reference for structuring a 3D CNN model to handle medical imaging
data effectively. The baseline model helped establish a foundational architecture, providing
a benchmark for evaluating the performance of more advanced or modified architectures. By
comparing the results of this baseline model with those of the other 3D CNN models, we
were able to assess the impact of different architectural designs on the accuracy and
effectiveness of lung nodule classification. This approach allowed for a thorough
investigation of the potential improvements and optimizations for nodule detection and

classification in chest CT scans.

The second architecture involved the 3D adaptations of AlexNet, which is the well-
established 2D CNN model. These adaptations aimed to capitalize on AlexNet’s success in
2D image classification tasks while modifying the architecture to handle volumetric data,
such as 3D lung nodule patches. By extending AlexNet's convolutional layers to 3D
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convolutions, we were able to explore the potential for leveraging pre-existing architectures

to process complex 3D medical data.

The third architecture was a hybrid model created by combining and modifying the first two
architectures. This combination aimed to enhance performance during training and
evaluation by integrating the strengths of both the baseline and the AlexNet-based 3D model.
The fourth architecture incorporated the CBAM (Convolutional Block Attention Module).
CBAM is an attention mechanism designed to improve the representational power of CNNs
by focusing on the most informative regions of the input data. By adding this module, we
sought to enhance the model's ability to focus on critical features within the 3D lung nodule
patches, potentially improving classification accuracy. In the following subsections, we
present model architecture diagrams and implementation code snippets for these four
models, highlighting the specific configurations and modifications made to enhance their
performance for lung nodule classification. All models are designed for an input shape of

(64, 64, 64). Detailed model summaries are provided in Appendix D.

4.3.1 Model-1: 3D-CNN Baseline Model

The baseline model consists of a simple 3D CNN architecture with four convolutional layers.
This architecture serves as the foundation for comparison with other models developed later
in the study. To enhance the generalization performance and prevent overfitting during
training, we applied L2 regularization using the kernel_regularizer=12 (12_reg) technique to
all Conv3D and Dense layers. This regularization method helps prevent the model from
overfitting to the training data by penalizing excessively large weights, encouraging the

model to generalize better to unseen data.

= Conv3D layers: Four convolutional layers, each followed by activation functions and
pooling layers to progressively extract spatial features from the 3D lung nodule data.
= L2 Regularization: Regularization was added to the convolutional and dense layers
using the L2 penalty to control the magnitude of weights and improve model
generalization.
= Activation Functions: ReLU activation functions were typically used after each
convolutional layer to introduce non-linearity and improve learning capacity.
Figure 4.1 depicts the model architecture, illustrating the flow of data from the input layer

through each convolutional block and eventually to the output layer for classification.
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Figure 4.1 Baseline Model Architecture.

Key Considerations for the baseline model are the following. One, L2 Regularization (12
(12_req)), Helps prevent overfitting by adding a penalty to the loss function that discourages
large weights. MaxPooling3D Layers: These layers reduce the spatial dimensions of the data
after each convolution, helping to retain important features and reduce computation. The
other is the Fully Connected Layer: After flattening the output of the convolutional blocks,
a dense layer is added to learn higher-level representations. Lastly, Output Layer: - where a
sigmoid activation function is used in the final layer for binary classification (malignant vs.

benign).

This baseline model serves as a simple yet effective approach for the initial lung nodule
classification task, offering a strong foundation for comparing with more complex models
later in the study.

4.3.2 Model-2: 3D-AlexNet Model

AlexNet, developed by Alex Krizhevsky in 2012, is a groundbreaking convolutional neural
network (CNN) architecture that achieved outstanding results in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). Key features of AlexNet include convolutional
layers equipped with filters designed to detect specific features within images. At the time,
AlexNet was considered an intense network consisting of five convolutional layers followed

by three fully-connected layers. This substantial depth enabled the model to learn intricate
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relationships between features at various levels of abstraction, significantly advancing the

field of computer vision and setting new benchmarks for image classification tasks.

AlexNet was indeed a groundbreaking achievement in the world of computer vision. Its
architecture laid the foundation for many subsequent innovations in the field. Here are a few
more interesting aspects of AlexNet. First, Activation Function: AlexNet used the ReLU
(Rectified Linear Unit) activation function, which helped in faster training than traditional
activation functions like tanh or sigmoid. Second, GPU Utilization: The training of AlexNet
utilized GPUs (graphics processing units) to handle the intensive computations required for
deep learning, significantly speeding up the process. Third, Data Augmentation: To enhance
the model's generalization capability and to prevent overfitting, AlexNet employed
techniques like image translations, horizontal reflections, and altering the intensities of the
RGB channels. It's fascinating how a single architecture can profoundly impact the
development of deep learning techniques. If you're interested, we can dive deeper into

specific aspects or explore how AlexNet influenced subsequent models.

AlexNet significantly shifted neural network training by implementing the ReLU (Rectified
Linear Unit) activation function instead of the more traditional sigmoid function. This
change allowed for faster training and better performance in deeper networks. Additionally,
AlexNet utilized dropout layers after some of the fully connected layers to combat
overfitting. These dropout layers randomly deactivate a percentage of neurons during
training, which helps the network learn robust features that aren't reliant on specific neurons.

This approach enhances the model's generalization capability.

Although AlexNet achieved remarkable success, it is relatively computationally expensive
compared to newer architectures. Modern convolutional neural networks (CNNs) often
feature deeper structures and employ techniques like batch normalization to enhance training
efficiency. Nevertheless, AlexNet remains a crucial milestone in the history of deep learning.
Its pioneering architecture and its success in image recognition continue to shape

advancements in computer vision.

The second model architecture employed in this study is adapted from the 3D AlexNet
design proposed by Rani et al. (2022) for MRI brain tumor classification. This architecture
was chosen for its efficiency in handling volumetric data and its demonstrated effectiveness
in medical imaging tasks. The modifications tailored the architecture to the lung nodule
classification task, including: 1) Batch Normalization: Added after convolutional layers to
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stabilize and accelerate training by normalizing layer inputs and reducing sensitivity to
initialization. 2) Dropout Layers: Incorporated after dense layers to mitigate overfitting by

randomly deactivating neurons during training, promoting robustness.

These modifications aimed to improve the model's training efficiency and generalization
capabilities.

Model Architecture: There are four major blocks in the architecture. It has multiple 3D
convolutional layers to extract hierarchical features from the input data. The other is Batch
Normalization, an intermediate output to maintain stable activations across layers. Further,
Dropout Regularization randomly deactivates neurons in dense layers to prevent overfitting.
Also, Fully Connected Layers encode high-level feature representations for final
classification. Finally, Binary Classification outputs the final layer using a sigmoid

activation function to distinguish between benign and malignant nodules.

Key Model Features: Input Size of (64, 64, 64) to match the preprocessed lung nodule
patches. Regularization Techniques, such as Batch normalization and dropout layers, are

added to enhance model robustness and training dynamics.

Training Enhancements: Batch Normalization improves convergence speed and reduces
overfitting risks. Further, Dropout Regularization is applied to minimize model dependence
on specific neurons, thereby enhancing generalization. Also, the Adam optimizer and binary

cross-entropy loss function were utilized for effective training.

The architecture, depicted in Figure 4.2 below, showcases its layered complexity designed
to exploit the 3D spatial context of lung nodule data. This AlexNet-inspired model provides

a robust framework for volumetric medical image classification tasks.

70



Layer 1

Layer 4

3DConv AFErrrrtd @ Layer2 AT 41 Layer3 T 3D Conv T Layer 5 £
96 Filters Batch 3D Max Pool 128 Filters Batch
Size: 5x5x3 Normalization Size: 3x3x3 Size: 3x3x3 Normalizatt
Stride: 2x2x2 Stride: 1x1x1 Stride: 1x1x1
Layer 6
Input image 3D Mx Pool
(64x64x64x1) Size:px3x3
Stridef 2x2x2
Layer 7
(Tl Layerll AITiin Al Layer 10 Layer9 CiTTiITAl Layer8 ] 3D Conv LTI Al
| 3D Conv Batch 3D Conv . Batch | 256 Filters
256 Flters Normalization 384 Filters Normalization " Size: 3x3x3
Size: 3x3x3 Size: 3x3x3 Stride: 1x1x1
Layer 12 Stride: 1x1x1 Stride: 1x1x1
Batch - = =
Normalization i} i i
------ A Loverls AT Layerld Layer 1S (FFFTTA H Layer17 | Layerls
3D Max Pool 3D Conv__ Batch Layer 16 _[1 Dense Batch
Size:2x2x2 256 Filters Normalization Flatten "[1 4096  [{Normalization [
Stride: 2x2x2 Size: 3x3x3 1 Neurons [ i
Stride: 2x2x2 n i
. Layerf 19
H Denje
i 1028
Output [} Layer20 [ Neurdns
i Layer : _ Layer2l M Batch H_
Dense || Dropout [ Nomalization!
1 Neuron [

Figure 4.2 3D AlexNet Model Architecture.

4.3.3 Model-3: Proposed 3D CNN Model

While trying to achieve strong performance, we investigated various architectural
configurations to combine the aforementioned model architecture layers. Through rigorous
experimentation, we identified the following architecture, which yielded the most promising

results.

After the input layer to extract spatial features from the input 3D data, we used 3D
convolutional filters. Conv3D layers apply 3D convolution operations to the input data. Each
Conv3D layer has a specified number of filters and a kernel size of 2. The activation function
used is ReLU, which introduces non-linearity to the model. The L2 regularization helps

prevent overfitting by penalizing large weights.

Then, the MaxPooling3D Layer performs down-sampling by taking the maximum value over
a specified pool size (2 in this case). This reduces the spatial dimensions of the feature maps,

which helps reduce computational complexity and control overfitting.
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Then, we used BatchNormalization Layers to normalize the output of the previous layer.
This helps stabilize and speed up the training process by reducing internal covariate shifts.
After that, we used Flatten Layer: This layer converts the 3D feature maps into a 1D vector,
which can then be fed into the fully connected layers. It essentially prepares the data for the
dense layers. Then Dense Layers: These are fully connected layers with 4096 units each,
using ReLU activation. They perform high-level processing on the features extracted by the
convolutional layers. L2 regularization is applied to prevent overfitting. Then, Dropout
Layer: This layer randomly sets 70% of the input units to zero during training. This helps
avoid overfitting by ensuring the model does not rely too heavily on any particular set of
features. Finally, the Output Layer: Dense Is the final layer with a single unit and sigmoid
activation function. This layer outputs a value between 0 and 1, making it suitable for binary
classification tasks. The model architecture is depicted in Figure 4.3.
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Figure 4.3 Proposed Model Architecture

4.3.4 Model-4 / Proposed 3D CNN Model with CBAM

In our quest to enhance the performance of our proposed model, we conducted additional
experiments and introduced the CBAM (Convolutional Block Attention Module). Placing

the CBAM module after the last convolutional layer and before the flattening layer enables
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The model concentrates on the most critical features before moving on to the dense layers.
Although the overall architecture remains similar to our original model, it now gains the
advantage of the attention mechanism provided by CBAM. Figure 4.4 illustrates the model

architecture, accompanied by the corresponding code implementation.
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Figure 4.4 Proposed Model with CBAM Architecture.

4.4 Model Training and Evaluation

For all four models, we followed the steps depicted on the block diagram in Figure 4.5.
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Figure 4.5 Block Diagram of Model Training Process

After the training process, the models are saved in the Hierarchical Data Format 5 (HDF5),
commonly referred to with the .h5 extension. This format is popular for deep learning models
as it stores not only the model architecture but also the trained weights and optimizer state.

To ensure optimal performance, we employed a checkpointing mechanism during training
using the ‘ModelCheckpoint callback.” This technique periodically evaluates the model's
performance on the validation set and saves a copy of the model with the best validation
accuracy achieved so far. This allows for resuming training from the best-performing model

if the training process is interrupted or if hyperparameter tuning requires restarting training.

Due to the binary classification nature of the problem, we initially used the Binary Cross-
Entropy (BCE) loss function. However, after various experiments and considering that the
validation data is not augmented, we opted for Binary Focal Crossentropy. This modified
version of binary cross-entropy introduces a focusing parameter that down-weights easy
examples and emphasizes hard-to-classify ones. It is particularly effective in scenarios with
class imbalance, helping the model concentrate more on the minority class or difficult

examples. The formula for binary focal cross-entropy is given in the equation. (4.1).
1
BFCL= —— 3 a(l—p;) [yilog(p) + (1 — y:) log(1 — py)] 4.1

Where: BFCL is Binary Focal Crossentropy Loss, « is a balancing factor to adjust the
importance of positive/negative examples. y is the focusing parameter that adjusts the rate at
which easy examples are down-weighted. A higher value of y increases the focus on hard

examples.
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4.5 Model Interpretation with GRAD-CAM

In this stage, we explored the use of Gradient-weighted Class Activation Mapping (Grad-
CAM ) to interpret the predictions of our deep-learning model for lung nodule classification.
Grad-CAM is a technique that aims to provide visual insights into the regions of a lung
nodule image that contribute most significantly to the model's classification decision

(malignant vs. benign).

We focused on the last convolutional layer for Grad-CAM analysis, as deeper layers in
convolutional neural networks tend to capture more abstract and semantic features, such as
shapes and textures, which can be more relevant for classification. We identified the last

convolutional layer using the model summary.

Grad-CAM leverages the class-discriminative nature of the network by generating separate
visualizations for each class (benign and malignant). The heatmap is created by calculating
the weighted sum of the feature map channels based on their importance for the predicted

class. Finally, normalization (0-1) is applied for visualization purposes.

To visualize the results, we overlaid the generated heatmaps onto the original CT scan slices.
This allowed us to visually inspect the regions of the nodule that the model focused on during
the classification process. The code snippet for our Grad-CAM implementation is available
in Appendix E. By incorporating these minor suggestions; you can further enhance the clarity

and detail of this section.
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CHAPTER FIVE
RESULTS AND DISCUSSION

5.1 Overview

This section delves into the results obtained during the training and evaluation of our four
3D Convolutional Neural Network (CNN) models. We utilize the performance metrics
outlined in Chapter 3 to rigorously assess their effectiveness. In addition to the performance
evaluation, we present Grad-CAM visualizations. This technique is employed to interpret
and visualize the decision-making processes of each model, providing valuable insights into

the regions within the images that most significantly influence the model's predictions.

5.2 Results
5.2.1 Experimenting Model 1

The training and validation result of Model-1 (Baseline Model) is presented in Figure 5.1

below.

Model Accuracy

rain N . -
“l ST T VTV

Model loss

Figure 5.1 Baseline Model accuracy and loss during training and validation.
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During the training process, we achieved a maximum validation accuracy of 81.19%. At this
particular epoch, the model exhibited remarkable performance metrics during training,
including an accuracy of 99.23%, precision of 99.25%, recall of 99.33%, AUC (Area Under
the Curve) of 99.38%, and an F1-score of 99.29%. For the validation dataset, the results were
also notable, with an accuracy of 81.19%, precision of 80.64%, recall of 94.93%, AUC of
74.76%, and an F1-score of 87.20%. These metrics highlight the model's robust performance
and its ability to generalize well to unseen data, although there's room for improvement in

certain validation metrics.

5.2.2 Experimenting Model -2

The training and validation result of model — 2 (3D AlexNet Model) is presented in Figure
5.2 below.
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Figure 5.2 3D AlexNet Model Accuracy and Loss during Training and Validation.
During the training of the 3D AlexNet model, we achieved a maximum validation accuracy
of 82.90%. At this epoch, the model's training performance metrics were an accuracy of
98.78%, precision of 98.70%, recall of 99.05%, AUC of 99.91%, and an F1-score of 98.88%.
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For the validation set, the performance metrics included an accuracy of 82.90%, precision
of 84.70%, recall of 91.13%, AUC of 84.42%, and an F1-score of 87.80%.

5.2.3 Experimenting model -3

The training and validation result of Model-3 / (Proposed 3D CNN Model) is presented in
Figure 5.3 below.
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Figure 5.3 Proposed Moc;el Accuracy and Loss during Training
During the training of Model-2, our proposed model, we achieved a maximum validation
accuracy of 83.76%. At this epoch, the training performance metrics included an accuracy
of 97.07%, precision of 97.58%, recall of 97.01%, AUC of 99.64%, and an F1-score of
97.92%. For the validation dataset, the model attained an accuracy of 83.76%, precision of

82.61%, recall of 96.20%, AUC of 82.15%, and an F1-score of 88.79%.

5.2.4 Experimenting model 4

The training and validation result of Model-4 / (Proposed 3D CNN Model) is presented in
Figure 5.4 below.

During the training of the proposed 3D-CNN with the CBAM model, we achieved a

maximum validation accuracy of 88.03%. At this epoch, the training performance metrics
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were: accuracy of 97.95%, precision of 97.49%, recall of 98.84%, AUC of 99.75%, and F1-
score of 98.16%. For the validation dataset, the model achieved an accuracy of 88.03%,
precision of 88.24%, recall of 94.94%, AUC of 90.04%, and an F1-score of 91.46%.
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Figure 5.4 Proposed 3D-CNN with CBAM Model Accuracy and Loss during Training.
Training Accuracy indicates how well the model is performing on the training dataset. A high
training accuracy suggests that the model is learning the patterns in the training data
effectively. Validation Accuracy measures the model's performance on unseen data
(validation set). It helps in assessing how well the model generalizes to new data. Ideally,

validation accuracy should be close to training accuracy.

Training Error (Loss) represents the error or loss on the training dataset. A decreasing
training error over time indicates that the model is learning and improving. Validation Error
(Loss) shows the error on the validation dataset. Monitoring validation errors helps in
detecting overfitting. If validation error starts increasing while training error decreases, it
may indicate overfitting. Those figures show how these metrics change over epochs.
Consistent improvement in both training and validation accuracy, along with decreasing

errors, suggests a well-performing model.
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5.2.5 Testing Results

These results were obtained during model testing using the test dataset, which comprises
10% of the entire dataset. The test set includes 38 remaining test cases of the benign class

and 80 test cases of the malignant class.

Table 5.1 Results of Performance Metrics for Testing Set

Performance Metrix

Models
Accuracy (%)  AUC (%)  F1-Score (%)
Baseline 3D CNN Model 80.50 85.26 86.75
3D ALEXNET 83.05 79.76 88.78
Proposed 3D CNN Model 88.98 97.91 91.50
Proposed 3D CNN Model with CBAM 94.06 98.84 95.56

Confusion Matrices and Classification Report for all Four Models: For Model-1 / Baseline
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Figure 5.5 Confusion Matrix and Classification Report for the Baseline Model

The confusion matrix depicted in Figure 5.5 illustrates the performance of Model-1 in
classifying lung nodules as either benign or malignant. True Positives represent malignant
nodules that are correctly identified as malignant. True Negatives denote benign nodules that
are accurately classified as benign. False Positives refer to benign nodules that are
mistakenly classified as malignant, whereas False Negatives correspond to malignant
nodules that are incorrectly classified as benign.

The model correctly predicted 72 malignant cases and 23 benign cases. The model

incorrectly predicted 15 benign cases as malignant and eight malignant cases as benign.
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For Model-2: 3D AlexNet model
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Figure 5.6 Confusion Matrix and Classification Report for the 3D AlexNet Model

The confusion matrix shown in Figure 5.6 illustrates the performance of Model 2 in
classifying lung nodules as benign or malignant. The model accurately predicted 76 cases as

malignant and 22 cases as benign. However, it misclassified 16 benign cases as malignant
and four malignant cases as benign.

For Model-3: Proposed Model
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Figure 5.7 Confusion Matrix and Classification Report for Proposed Model

As shown in the confusion matrix in Figure 5.7, the model accurately identified 70 malignant
cases and 35 benign cases. However, it incorrectly classified three benign cases as malignant
and 10 malignant cases as benign.
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For Model-4: Proposed Model with CBAM
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Figure 5.8 Confusion Matrix and Classification Report for Proposed Model with CBAM

As illustrated in the confusion matrix in Figure 5.8, the model accurately identified 74
malignant cases and 34 benign cases. However, it misclassified four benign cases as

malignant and six malignant cases as benign.

5.2.6 Interpretability Results

The interpretability results for all three models are depicted in the next table. We showed the
visual explanations using the heatmap generated by Grad-CAM for a single slice from the

whole 64 slices.
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Table 5.2 Visual Insights into the Baseline 3D CCN Model’s decision making

Original Slice Generated Heatmap Generated Heatmap
with Bounding Box

This model is 40.27 percent confident that CT scan is benign.
This model is 59.73 percent confident that CT scan is malignant.
True value = Malignant

This model is 95.72 percent confident that CT scan is benign.
This model is 4.28 percent confident that CT scan is malignant.
True value = Malignant

This model is 17.95 percent confident that CT scan is benign.
This model is 82.05 percent confident that CT scan is malignant.
True value = Malignant
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Table 5.3 Visual Insights into the 3D AlexNet model’s decision making

Original Slice Generated Heatmap Generated Heatmap
with Bounding Box

This model is 38.51 percent confident that CT scan is benign.
This model is 61.49 percent confident that CT scan is malignant.
True value = Malignant

This model is 49.34 percent confident that CT scan is benign.
This model is 5@.66 percent confident that CT scan is malignant.
True value = Benign

-
i

This model is 64.13 percent confident that CT scan is benign.
This model is 35.87 percent confident that CT scan is malignant.
True value = Malignant
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Table 5.4 Visual Insights into the proposed model’s decision making

Original Slice Generated Heatmap Generated Heatmap
with Bounding Box

This model is 5@.21 percent confident that CT scan is benign.
This model is 49.79 percent confident that CT scan is malignant.
True value = Benign

This model is 5@.22 percent confident that CT scan is benign.
This model is 49.78 percent confident that CT scan is malignant.
True value = Benign

This model is 7.39 percent confident that CT scan is benign.
This model is 92.61 percent confident that CT scan is malignant.
True value = Benign
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Table 5.5 Visual Insights into the Proposed Model with CBAM Model’s decision making

Original Slice Generated Heatmap Generated Heatmap
with Bounding Box

This model is 6.98 percent confident that the CT scan nodule patch is Benign.
This model is 93.02 percent confident that the (T scan nodule patch is Malignant.
The Radiologists determined the nodule as (true class) is: Malignant.

. e e il
This model is 40.11 percent confident that the CT scan nodule patch is Benign.
This model is 59.89 percent confident that the CT scan nodule patch is Malignant.
The Radiologists determined the nodule as (true class) is: Malignant.

This model is 38.77 percent confident that the (T scan nodule patch is Benign.
This model is 61.23 percent confident that the CT scan nodule patch is Malignant.

The Radiologists determined the nodule as (true class) is: Malignant.
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Lung tissue frequently appears darker on CT scans, with lung nodules manifesting as white
spots. As a result, radiologists typically focus on these dark regions containing white spots.
Ideally, our models should replicate this approach by concentrating solely on the lung areas.
However, our visualizations revealed instances where certain models, such as Model 4, were
drawn to non-lung regions, even when the classification was accurate. Figure 5.9 shows a
sample test lung nodule CT scan image, demonstrating how the model might inadvertently
focus on areas outside the lung regions.

This model is 4.65 percent confident that the CT scan nodule patch is Benign.

This model is 95.35 percent confident that the CT scan nodule patch is Malignant.
The Radiologists determined the nodule as or the true class is: Malignant.

Bone Area

Figure 5.9 Sample Model-4 Result Interpretability Evaluation by the Radiologists

According to feedback from expert radiologists, interpretability visualizations should ideally
display all three planes of the 3D CT scan image: axial, sagittal, and coronal. This approach
corresponds with how radiologists typically view and analyze CT scans using medical
imaging software. To thoroughly understand the model's focus, we generated 3D

visualizations for all three planes, as shown in Figure 5.10.

Experts overwhelmingly preferred 3D visualization, which includes all three planes (axial,

sagittal, and coronal) over single-plane or solely axial views. This comprehensive approach

offered a more holistic understanding of the model's focus, aiding in interpreting its

predictions. By presenting the model's attention from different perspectives, clinicians could
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better evaluate the relevance and accuracy of the generated heatmaps, thereby enhancing the

interpretability and reliability of the model's outputs.

Figure 5.10 Sample 3D Interpretability Visualization Based on the Experts' Suggestions

5.3 Discussions
5.3.1 Results Discussion

The training history reveals that the initial 3D CNN models performed well in classifying
lung nodules as benign or malignant. However, a noticeable decline in performance on the
test and validation datasets suggested the presence of overfitting, where the models were
overly tuned to the training data at the expense of generalizability. To address this issue,
dropout layers and L2 regularization techniques were implemented across all models, with
dropout rates varying from 60% to 80%. Among these, a dropout rate of 70% proved the
most effective, achieving the highest validation accuracy and demonstrating its capability to
curb overfitting while maintaining model robustness.
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Additionally, an in-depth evaluation of different learning algorithms and optimizers was
performed to enhance the training process. The Adam optimizer emerged as the most
consistent performer across all 3D CNN models. Its adaptive learning rate and momentum-
based approach effectively facilitated optimization, making it particularly suitable for this
task. These findings underscore the importance of regularization techniques and algorithm
selection in achieving both high accuracy and generalizability in the classification of lung

nodules.

Given the substantial memory requirements associated with processing 3D data and
implementing 3D CNN architectures, experimenting with larger batch sizes was impractical.
To address this limitation, a batch size of 16 was selected for all four models. This
configuration struck a balance between computational efficiency and resource constraints,
enabling the models to be trained effectively while avoiding resource exhaustion or out-of-
memory errors. By adhering to this setup, the training process remained stable, ensuring

consistent progress without compromising model performance or hardware limitations.

These modifications, including the implementation of dropout layers and the selection of the
Adam optimizer, effectively addressed the overfitting issue and resulted in improved
performance on the validation set. Additionally, the chosen batch sizes ensured efficient
training while staying within GPU memory constraints. Now, let’s delve into the results of

each model.

The LUNA22 ISMI dataset is imbalanced, containing nearly twice as many malignant
nodules as benign ones. Despite our efforts to balance the dataset through augmentation, the
models have learned to distinguish malignant class nodules more accurately than benign
ones. To further investigate this, we calculated the specificity of the models for the training,
testing, and validation sets.

Specificity: Specificity complements recall by assessing the model's capability to accurately
classify negative cases (benign nodules). It is calculated as the ratio of true negatives to the

total number of negative samples in the testing data.
Specificity =TN/(FP +TN) Equation. (5.1)

When we calculated the specificity using Equation 5.1 for the test set, we found the baseline
model had a specificity of 74.19%, the AlexNet model had 84.61%, the proposed model had
77.78%, and the proposed model with CBAM achieved 85%. The proposed model with
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CBAM not only achieved higher training and testing accuracy but also demonstrated high

specificity, indicating its strong ability to correctly identify benign nodules.

The findings of the current study, while showcasing the model's ability for lung nodule
classification, do not necessarily reflect the highest performance achievable in this field. As
noted in the literature review, other studies using different datasets have reported superior

classification results.

A significant limitation of this research is the lack of a publicly available leaderboard for
benchmarking performance on the specific dataset used. The absence of established
benchmarks makes it difficult to directly compare our model's accuracy and generalizability

with existing solutions.

The convolutional layers in the fourth model extract relevant features from the CT scan
images. These features may include patterns linked to lung cancer nodules, such as variations

in tissue density, texture, or shape.

Attention Mechanisms: The CBAM module significantly enhances feature learning for
lung cancer nodule detection. Channel Attention: By concentrating on the most informative
channels, the channel attention mechanism enables the model to identify specific features
within CT scan images that are highly indicative of lung cancer nodules. This enhances the

model's sensitivity to subtle variations in tissue characteristics.

Spatial Attention: By emphasizing the crucial spatial locations within CT scan images, the
spatial attention mechanism allows the model to accurately identify regions where lung
cancer nodules are likely present. This enhances the model's localization accuracy and helps

reduce the number of false positives.

Improved Feature Learning: The CBAM module aids the model in concentrating on the
most distinguishing features within CT scan images, resulting in more accurate and robust
lung cancer nodule classification. Enhanced Localization: By pinpointing the exact spatial
locations of lung cancer nodules, CBAM enhances the model's ability to localize these

nodules within the CT scan images.

By suppressing irrelevant features and concentrating on the most informative regions,
CBAM helps reduce the number of false positive detections, thereby improving the model's

specificity (Reduced False Positives).
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CBAM aids the model in learning more generalizable features, which reduces the risk of

overfitting and enhances performance on unseen CT scan images (Improved Generalization).

Overall, the 3D CNN model with CBAM is well-suited for lung cancer nodule classification
from CT scan images. By effectively leveraging the attention mechanisms and concentrating
on the most relevant features and spatial locations, the model can achieve high accuracy and

sensitivity in detecting lung cancer nodules.

In our implementation, Grad-CAM was applied to individual slices within CT scan patches.
These patches, consisting of 64 axial slices of nodule images, serve as the model's input data.
By generating heatmaps for each slice, Grad-CAM visualizes the regions the model focuses
on when classifying a specific nodule patch as malignant or benign. These interpretable heat
maps offer valuable insights for clinicians and radiologists. By visualizing the model's focus
areas within each slice, these heatmaps can potentially Enhance Decision Support and offer
insights that complement the radiologist's expertise, potentially aiding in the final
classification of a nodule as malignant or benign. Improve Explainability: Increase the
transparency of the model's predictions, allowing clinicians to better understand the rationale

behind the model's classification decisions.

Identify Potential Biases: The heatmaps may uncover any biases within the model, such as
an over-reliance on specific image artifacts or features that may not be clinically relevant.
While Grad-CAM offers valuable interpretability, it has limitations. Grad-CAM mainly
focuses on localized regions that contribute to the classification and might not capture the
model's higher-level reasoning processes (Chattopadhyay et al., 2017; Selvaraju et al., 2017).
Therefore, it is essential to explore more advanced interpretability techniques that delve

deeper into the model's internal workings and feature interactions.

We chose to integrate CBAM into the best of the three models, which was Model 3. Grad-
CAM (Gradient-weighted Class Activation Maps) and CBAM (Convolutional Block
Attention Module) are powerful techniques that enhance the interpretability of deep learning
models. Grad-CAM generates class-specific heatmaps highlighting the most critical regions
in an input image that contribute to a given prediction. CBAM, on the other hand,
dynamically adjusts feature responses by learning adaptive attention weights (Woo et al.,
n.d.). Combining Grad-CAM and CBAM provides a deeper understanding of how the model
makes decisions. The input image passes through the model's layers, including the CBAM
module. CBAM dynamically adjusts the feature responses based on their importance. The
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gradient of the target class is computed and propagated backward through the model, with

the gradients weighted by the activations of the final convolutional layer.

The weighted gradients are averaged to create a class-specific heatmap, highlighting the
regions in the input image that contributed most to the prediction. The benefits of combining
Grad-CAM and CBAM include Enhanced Interpretability: CBAM's attention mechanism
helps Grad-CAM focus on the most relevant features, making the generated heatmaps more
informative and easier to understand. Improved Localization: The attention weights learned
by CBAM guide Grad-CAM to more accurately localize important regions in the input
image. Better Understanding of Model Behavior: By combining these two techniques, we
gain a deeper understanding of the model's decision-making process and the features it

focuses on.

Additionally, incorporating these interpretable heatmaps into a user-friendly clinical
interface could significantly enhance their practical utility in real-world medical practice.
Since the interpretation is conducted for the 3D models, radiologists can thoroughly examine
the entire series of CT scan nodules for a deeper investigation. This process is illustrated in
Figure 5.9.
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Figure 5.11 3D Grad-CAM Visualizations for the axial slices

5.3.2 Research Question Discussion

An answer for RQ1: This study delves into exploring various techniques and tools to utilize
the rich information captured by chest CT scans. A primary focus was on leveraging the
inherent 3D nature of this data modality. Unlike simpler image formats, CT scans provide
volumetric information crucial for tasks such as lung nodule classification. By employing
3D data as input, we could harness the spatial relationships and contextual information
existing between voxels (3D volume elements) within the CT scans. This 3D information

holds valuable features for differentiating malignant from benign lung nodules.

To Effectively exploit this 3D information, we developed 3D convolutional neural networks
(CNNSs). These networks are specifically designed to process volumetric data, allowing them
to learn features directly from the 3D CT scans. These learned features can then be used for
various applications, including the classification of lung nodules in our case. The 3D CNN
approach offers several advantages compared to traditional methods that might rely on pre-
processing steps to convert 3D CT scans into simpler 2D representations. These pre-
processing steps can potentially lead to information loss and hinder the model's ability to
capture the full spectrum of features present in the 3D data. By directly using 3D CNNs, we

can:

Preserve Spatial Relationships: Maintain the spatial information between voxels within

the CT scan, potentially leading to more robust feature extraction for classification.
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Learn 3D Features: The 3D CNN architecture allows the model to learn features directly
from the 3D data, potentially capturing intricate or detailed relationships between anatomical
structures within the lung. Based on our experiments, our proposed model with CBAM
(Convolutional Block Attention Module) performed better than the other models in
classifying lung nodules. CBAM helped the model focus on the most relevant features,

leading to improved classification performance.

An answer for RQ2: The proposed model demonstrates strong performance for early-stage
lung cancer detection and classification by leveraging a carefully designed neural network
architecture tailored for medical imaging. Through our research, the 3D Convolutional
Neural Network (3D CNN) combined with attention mechanisms proved to be the most
effective. This architecture is particularly adept at capturing spatial and volumetric features
critical for identifying subtle early-stage lung nodules. Key performance metrics achieved:
Accuracy: High precision in detecting and classifying malignant and benign nodules.
Sensitivity: Reliable detection of even small nodules, crucial for early-stage diagnosis.
Specificity: Minimization of false positives to prevent unnecessary interventions. The model
integrates explainable Al (XAI) methods, such as Grad-CAM, to provide interpretable
results, enhancing trust and usability in clinical settings. These results highlight the
architecture’s capability to meet the dual objectives of accuracy and transparency, making it
a robust solution for early-stage lung cancer detection.

Answer for RQ3: Integrating Explainable Al (XAl) in Lung Cancer Detection Models
Context: Developing robust lung cancer detection models faces the challenge of
interpretability, especially in deep learning models, which often act as "black boxes."
Integrating Explainable Al (XAI) methods is essential to build trust among clinicians and
patients.

1. Importance of Explainability: Trust and Adoption Clinicians are more likely to
adopt Al systems that can justify their decisions. Error Analysis: Identify
weaknesses in model predictions, such as misclassified nodules. Ethical

Considerations: Ensure compliance with ethical and regulatory standards.

2. XAl Methods for Interpretability: Feature Attribution Methods; Grad-CAM:
Generates heatmaps highlighting regions of CT scans that influence the model’s
prediction. Integrated Gradients: Measures each pixel's contribution to the model’s
output. Surrogate Models: Simple models (e.g., decision trees) that approximate
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complex models and provide human-readable logic. Rule-Based Explanations:
Provide textual explanations based on extracted rules. Counterfactual

Explanations: Highlight how slight input changes could alter predictions.

3. Integration into Research Framework: Preprocessing Data; Segment lung
regions and standardize data for consistency. Model Architecture: Include attention
mechanisms and interpretable constraints. Post-Hoc Explanation: Use Grad-CAM
or Integrated Gradients for visual overlays and generate textual explanations. User
Interface: Display explanations alongside predictions with visual outputs (e.g.,
heatmaps) and textual descriptions.

4. Validation and Evaluation: Clinical Validation; Collaborate with radiologists and
oncologists. Metrics for Evaluation: Use faithfulness and comprehensibility

metrics. Real-World Testing: Evaluate explanations in clinical scenarios.

5. Addressing Challenges: Complexity and Simplicity; Use a combination of visual
and textual explanations. Computational Cost: Optimize workflows with parallel
processing. Clinical Relevance: Focus on medically relevant features with domain

expert consultation.

6. Benefits of Integration: Improved Trust; Gain confidence in the Al model's
predictions. Enhanced Decision-Making: Validate or refine diagnoses. Regulatory
Compliance: transparent models are likely to pass evaluations. Wider Adoption:

Explainable systems are more likely to be used in healthcare settings.

Conclusion: Integrating XAl methods enhances the interpretability of Al-driven medical
systems, bridging the gap between Al capabilities and clinical applicability and ensuring
accurate and actionable model predictions.
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CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This research explored the use of 3D convolutional neural networks (CNNSs) for classifying
lung nodules. By utilizing a 3D CNN architecture, we were able to extract features directly
from the volumetric CT scan data to achieve reliable and accurate differentiation between

malignant and benign nodules.

To understand the decision-making processes of the 3D CNN model, we integrated Gradient-
weighted Class Activation Mapping (Grad-CAM) for interpretability analysis. Grad-CAM
produces heatmaps that highlight the specific regions within a CT scan slice that play a
crucial role in the model's classification of a particular nodule patch. These visual insights
can assist healthcare professionals in comprehending the model's reasoning behind its

predictions, thereby enhancing trust and facilitating informed decision-making.

To address the challenge of class imbalance and improve the model's performance, we
utilized data augmentation and fine-tuning techniques. While there is still room for further
refinement, our proposed 3D CNN model demonstrated promising results, achieving
accuracies of 94.06% on the testing set and 88.06% on the validation set.

It's essential to recognize the inherent challenges in medical image analysis. Medical images,
such as CT scans, are often detailed and show subtle variations that can be challenging for
models to differentiate, especially between benign and malignant nodules. Furthermore, the
3D nature of CT scans adds a layer of complexity compared to simpler 2D images, which

may require more advanced models and larger datasets to achieve optimal performance.

The proposed 3D CNN model with CBAM achieved an impressive AUC of 98.84 and an
F1-score of 95.56 on the test set. These metrics indicate the model's strong potential for
accurate lung nodule classification. Importantly, the high recall value of 94.99 signifies a
low rate of missed malignant nodules, which is critical in clinical settings. The performance
on the test set demonstrates good generalizability. The consistency between validation and
test set results suggests that the model is not overfitting to the training data and can perform
well on unseen data. While these metrics are encouraging, it's important to recognize

potential limitations. A larger dataset could further improve generalizability. Additionally,
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comparing these results with those from other models or established benchmarks would
provide a more comprehensive understanding of the 3D CNN model's relative strengths and

weaknesses.

6.2 Future Work

Building on the promising outcomes demonstrated by the 3D CNN models, future research
can delve into several strategies to enhance their performance and generalizability further.
A more comprehensive analysis of the class activation maps (CAMSs) generated using Grad-
CAM could significantly contribute to the explainability of the model. Collaborating with
radiologists to scrutinize these activation maps can provide critical insights into the regions
the model emphasizes during lung nodule classification. Understanding these focal areas can
uncover the model's strengths and highlight potential limitations. This valuable feedback can
then be used to optimize the network architecture or adjust the training process, ultimately

aiming to improve classification accuracy and reliability.

Leveraging Local Datasets and Expert Knowledge: The availability of a locally collected
dataset, gathered in collaboration with healthcare professionals, offers a valuable
opportunity. By strategically combining this local dataset with publicly available datasets,
we can create a more diverse and robust data pool for model training. This diversification
can enhance the model's ability to generalize to unseen data and improve its performance

across various nodule types and appearances.

Addressing Class Imbalance: As noted earlier, class imbalance within the training data can
negatively affect the model's ability to effectively learn features from the under-represented
class (benign nodules). To improve classification accuracy for both malignant and benign
nodules, balancing the class distribution during training could be a key strategy. By ensuring
a more equal representation of both classes, the model may develop a more comprehensive
understanding of the distinguishing features for each type of nodule, leading to better overall

performance.

The field of deep learning is continuously advancing, with new and enhanced architectures
regularly being developed. Exploring alternative 3D CNN architectures specifically
designed for medical image analysis could significantly improve feature extraction

capabilities for lung nodule classification. Furthermore, integrating attention mechanisms
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within the network architecture might enable the model to focus on the most discriminative

regions within the CT scans, thereby boosting classification accuracy.

Close collaboration with radiologists throughout the research process is essential. Their
expertise plays a vital role in interpreting Class Activation Maps (CAMs), as they can help
identify the image features that the model prioritizes for classification. With their clinical
knowledge, radiologists can assess the relevance of these features, ensuring that the model's
focus aligns with what is important for accurate diagnosis. This collaboration not only
enhances the model's interpretability but also ensures its practical applicability in clinical

settings.

Validating Model Performance: Engaging radiologists in the evaluation process can provide
essential feedback on the model's performance within a real-world clinical context.

Guiding future research directions through collaboration with healthcare professionals is
crucial. Their insights can help pinpoint areas where the model can be further optimized,
ensuring that it meets the practical needs of clinical environments. By working together, we
can refine the model’s accuracy, interpretability, and overall utility, ultimately making it a
more effective tool for early-stage lung cancer detection and improving patient care

outcomes.

By applying these strategies and collaborating with healthcare professionals, we aim to
develop a highly accurate and generalizable 3D CNN model for lung nodule classification.

This effort ultimately enhances diagnosis and improves patient care in the future.
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APPENDICES

A. CT Scan image - Advanced X-ray Imaging

CT scans employ advanced detectors to simultaneously capture numerous X-ray images
from different angles, enabling the creation of highly detailed 3D representations of the body.
Enhancements such as multi-energy imaging and spatial filtering significantly improve
image clarity, while dose modulation techniques are used to reduce radiation exposure
effectively (Islam et al., 2023). The resulting images can be presented in diverse formats,
including cross-sectional views, 3D visualizations, and even immersive virtual reality

models.

The CT scanner features a donut-shaped structure with a motorized table where the patient
lies. This table moves into the scanner, where an internal X-ray tube rotates around the
patient, emitting X-ray beams from multiple angles. As the beams pass through the body,
they are absorbed at varying levels by different tissues, creating a pattern of attenuated X-
rays. Detectors located opposite the X-ray tube capture these patterns and convert them into
electrical signals. These signals are then processed by a computer using advanced algorithms

to construct a detailed three-dimensional image of the body (Islam et al., 2023).

(a) X-ray source (b)

\ X-ray source sample array detectc

rotate

rotate step-by-step |
rotation }

multiple detectors

Principle of Computed Tomography Imaging

CT scan images differ significantly from standard JPEG images, as they are stored in
specialized formats such as DICOM and NIfTI. These formats are designed to handle the
complex data captured by CT scanner detectors. The detectors in a CT scanner collect raw

imaging data by measuring the attenuated X-rays after they pass through the body. This data
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is then transmitted to the image processor, where it is converted into meaningful images
using advanced computational techniques, ensuring accurate representation and

compatibility with medical imaging standards.

CT scan Hardware:

= X-ray Generator: Produces the X-ray beam.

= X-ray Tube: Converts electricity into X-rays.

= Gantry: Houses the X-ray tube and detectors, rotating around the patient for 360-
degree views.

= Patient Table: Moves the patient through the gantry during the scan.

= Photon Detectors: Capture and measure X-rays passing through the body.

= Shielding Elements: Absorb scattered X-rays, minimizing noise and radiation
exposure.

= Image Processor: Processes the raw scan data.

= Console: Controls the entire scanning process.

B. Important Factors to Consider with CT-scan Images

Image Windowing: When viewing CT images, the human eye can differentiate fewer
shades of gray, even though Hounsfield Unit (HU) values are expressed on a 5000-unit scale.
The displayed greyscale brightness and contrast can be adjusted by modifying the number
of included HUs (referred to as the "window") and/or the HU value set as the central or
middle value (referred to as the “level™). The image viewer can manually change these
settings by interacting with the image software using a mouse. "Windowing" or "changing
the window" means altering what is shown in the image by shifting the visible HU range
(Shady Hermena & Michael Young, 2023). The window width determines the image
contrast. As the width increases, the contrast decreases. The range of HUs displayed in the
image is determined by the window width. For structures with similar attenuation values, a
small window (50-350 HU) is appropriate. For structures with significantly varied

attenuation values, a large window (400-2000 HU) is suitable.

Level: The brightness of the image depends on the window level. As the level increases, so
does the brightness. By adjusting the window level, the central or midpoint gray value for
the HU range displayed in the image can be set. The brightness of the image increases with

higher window levels and decreases with lower levels. The window level also affects the
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optimal imaging of various tissues (Shady Hermena & Michael Young, 2023). Denser tissues

require a higher level, while less dense tissues require a lower level.

The wider the window, the more densities are seen but less contrast. In a narrow window,
fewer densities are seen but more contrast. Window (W) is how many HU within 256 shades
of grey, while Level (L) is where the window is centered. Anything lower than the window
is going to appear black, and anything higher than the window is going to look white. {i.e.
<L-1/2W = Dblack and > L + 1/2W = white}. For the lung, the window is commonly +1500,
and the level is commonly -700.

Planes and Orientations: The capacity to fully rebuild the pictures in the Axial or
Transversal, sagittal, and Coronal or Frontal planes is one benefit of obtaining a volume
acquisition CT scan. When assessing the degree of disease in a patient, it is especially useful
to view the anatomy and pathology in all three planes (Mayo, 2009). While

Anterior refers to the front of the body, closer to the head.

Posterior refers to the back of the body, closer to the rear.

CT scan images can be viewed in various formats:

Axial Slices: These are cross-sectional images, like slices of bread, providing a horizontal
view of the body at different levels.

Coronal Slices: These slices are oriented vertically, providing a view from the front to the
back of the body.

Sagittal Slices: These slices are also vertical but oriented from side to side, offering a view
from the left to the right of the body.

3D Reconstructions: These are computer-generated 3D models of the scanned body,

allowing for visualization from any angle.

Superior

Coronal Plane
| h_\‘“\—:‘_ﬁ_ Eae -
' .. Sagittal
!9 - Plane

Inferior l

Planes and Orientations and Anatomical Orientation
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C. How Do Low-Dose CT Scans Show Whether We Have Lung Cancer?

Low-dose CT (LDCT) scans, unlike traditional CT scans, use a significantly lower radiation
dose, making them a safer option for screening (National Cancer Institute et al., 2021). These
scans are particularly effective at visualizing small nodules in the lungs, which may indicate
early-stage lung cancer (Gierada et al., 2020). Standard chest X-rays often lack the sensitivity
to detect such subtle nodules. The ability of LDCT to identify these early lesions allows for
intervention at a more treatable stage, potentially improving patient outcomes. While LDCT
aids in visualization, interpreting the findings requires a structured approach. Radiologists
rely on established guidelines, such as the Lung-RADS classification system, to ensure
consistent interpretation across healthcare settings. These guidelines provide a framework
for evaluating nodule characteristics, including size, number, and morphology (solid, part-
solid, or non-solid). Based on this evaluation, a Lung-RADS score (1-4) is assigned to the

scan (American College of Radiology, 2023).

= Lung-RADS 1: No nodules were identified, indicating a low suspicion of cancer.
Follow-up screening is typically recommended in one year (National Cancer Institute
etal., 2021).

= Lung-RADS 2: A small, non-concerning nodule is present. Similar to Lung-RADS
1, follow-up screening at one year is often advised (National Cancer Institute et al.,
2021).

= Lung-RADS 3: A small nodule with features that warrant closer monitoring. In this
case, a follow-up scan at six months might be recommended (National Cancer
Institute et al., 2021).

= Lung-RADS 4: This category encompasses nodules with a higher suspicion of
malignancy based on their appearance on the CT scan.
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While LDCT can provide valuable information regarding nodule characteristics, it's
important to recognize its limitations. Distinguishing benign from malignant nodules based
solely on imaging can be challenging, and additional investigations, such as biopsies, may
be necessary for a definitive diagnosis (National Cancer Institute et al., 2021). The textural
characteristics of nodules, categorized as solid, part-solid, or non-solid on LDCT scans, can
offer clues regarding their potential malignancy (Sujatha & Prabhakar, 2019). Solid nodules,
appearing opaque on the scan, are generally considered more suspicious for cancer compared
to non-solid nodules, where underlying lung tissue can be visualized (American College of
Radiology, 2023). Part-solid nodules exhibit a mixed appearance, with both solid and non-
solid components. These require careful evaluation and may warrant further investigation

depending on their specific features (Gierada et al., 2020).

File Edt Segmentation Workspace Tools Help
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D. Model Architecture Summaries of the Four Models Used

The number of parameters for each layer for all three models can be calculated using the

formulas in equation (F.1) and equation (F.2).
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+ For the convolutional layer:

#param = (wWxhx*d xPf «+ 1) x Cf Equation (F.1)

+ For FC-layer:
# param = (Pn+ 1) xCn

Equation. (F.2)

Where “# param” is the total number of parameters in the layer, “w” is filter width, “h” is
filter height, “d” is filter depth, “Pf” is number of filters of the previous layer, “Cf” is number
of filters of the current layer, “Pn” is previous layer number of neurons, “Cn” is current layer

number of neurons. (‘None’ in the output shape denotes the batch size)

Baseline Model / Model-1 Model Summary:

Layer Output Shape Param #
Input Layer [(None, 64, 64, 64, 1)] 0
Conv3D (None, 63, 63, 63, 64) 576
Max Pooling 3D (None, 31, 31, 31, 64) 0

Batch Normalization (None, 31, 31, 31, 64) 256
Conv3D (None, 30, 30, 30, 64) 32,832
Max Pooling 3D (None, 15, 15, 15, 64) 0

Batch Normalization (None, 15, 15, 15, 64) 256
Conv3D (None, 14, 14, 14, 128) 65,664
Max Pooling 3D (None, 7, 7,7, 128) 0

Batch Normalization (None, 7, 7,7, 128) 512
Conv3D (None, 6, 6, 6, 256) 262,400
Max Pooling 3D (None, 3, 3, 3, 256) 0

Batch Normalization (None, 3, 3, 3, 256) 1,024
Global Average Pooling 3D (None, 256) 0

Dense (None, 1024) 263,168
Dropout (None, 1024) 0
Dense (None, 1) 1,025

Total params: 627,713 (2.39 MB)
Trainable params: 626,689 (2.39 MB)
Non-trainable params: 1,024 (4.00 KB)
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3D AlexNet Model / Model -2 Model Summary:

Layer Output Shape Param #
Input Layer [(None, 64, 64, 64, 1)] 0
Conv3D (None, 30, 30, 31, 96) 7,296
Batch Normalization (None, 30, 30, 31, 64) 384
Max Pooling 3D (None, 28, 28, 29, 96) 0

Conv3D
Batch Normalization
Max Pooling 3D

(None, 26, 26, 27, 128) 331,004
(None, 26, 26, 27, 128) 512
(None, 12, 12, 13, 128) 0

Conv3D (None, 12, 12, 13, 256) 884,992
Batch Normalization (None, 12, 12, 13, 256) 1,024
Conv3D (None, 12, 12, 13, 384) 2,654,592
Batch Normalization (None, 12, 12, 13, 384) 1,536
Conv3D (None, 12, 12, 13, 256) 2,654,464

Batch Normalization (None, 12, 12, 13, 256) 1,024

Max Pooling 3D (None, 6, 6, 6, 256) 0

Conv3D (None, 3, 3, 3, 256) 1,769,728
Batch Normalization (None, 3, 3, 3, 256) 1,024
Flatten (None, 6912) 0

Dense (None, 4096) 28,315,648
Batch Normalization (None, 4096) 16,384
Dense (None, 1024) 4,195,328
Batch Normalization (None, 1024) 4,096
Dropout (None, 1024) 0

Dense (None, 1) 1,025

Total params: 40,840,961 (155.80 MB)
Trainable params: 40,827,969 (155.75 MB)
Non-trainable params: 12,992 (50.75 KB)
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Proposed 3D CNN Model / Model-3 Model Summary:

Layer Output Shape Param #
Input Layer [(None, 64, 64, 64, 1)] 0

Conv3D (None, 63, 63, 63, 64) 576

Max Pooling 3D (None, 31, 31, 31, 64) 0

Batch Normalization (None, 31, 31, 31, 64) 256
Conv3D (None, 30, 30, 30, 128) 65,664
Max Pooling 3D (None, 15, 15, 15, 128) 0

Batch Normalization (None, 15, 15, 15, 128) 512
Conv3D (None, 14, 14, 14, 128) 131,200
Max Pooling 3D (None, 7,7, 7, 128) 0

Batch Normalization (None, 7, 7,7, 128) 512
Conv3D (None, 6, 6, 6, 128) 131,200
Max Pooling 3D (None, 3, 3, 3, 128) 0

Batch Normalization (None, 3, 3, 3, 128) 512
Flatten (None, 3456) 0

Batch Normalization (None, 3456) 13, 824
Dense (None, 4096) 14,159,872
Dense (None, 4096) 16,781,312
Dropout (None, 4096) 0

Dense (None, 1) 4,097

Total params: 31,289,537 (119.36 MB)
Trainable params: 31,281,729 (119.33 MB)
Non-trainable params: 7,808 (30.50 KB)
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Proposed 3D CNN Model with CBAM / Model-4 Model Summary:

Layer

Input Layer
Conv3D-1

Max Pooling 3D-1
Batch Normalization-1

Conv3D-2
Max Pooling 3D-2

Batch Normalization-2
Conv3D-3

Max Pooling 3D-3
Batch Normalization-3
Conv3D-4

Max Pooling 3D-4
Batch Normalization-4

Global Average Pooling
3D-1

Global Max Pooling 3D-1
Reshape-1

Reshape-2
Dense-1
Dense-2
Dense-3
Dense-4
Add-1
Activation
Multiply-1

Global Average Pooling
3D-2

Global Max Pooling 3D-2
Add-2

Reshape-3

Conv3D-5

Multiply-2

Batch Normalization-5
Flatten

Batch Normalization-6
Dense-5

Dense-6

Dropout

Dense-7

Output Shape

[(None, 64, 64, 64, 1)]
(None, 63, 63, 63, 64)
(None, 31, 31, 31, 64)
(None, 31, 31, 31, 64)
(None, 30, 30, 30, 128)
(None, 15, 15, 15, 128)

(None, 15, 15, 15, 128)
(None, 14, 14, 14, 128)

(None, 7,7, 7, 128)
(None, 7,7,7, 128)
(None, 6, 6, 6, 128)
(None, 3, 3, 3, 128)
(None, 3, 3, 3, 128)

(None, 128)
(None, 128)
(None, 1,1, 1, 128)
(None, 1,1, 1, 128)
(None, 1,1, 1, 16)
(None, 1,1, 1, 16)
(None, 1,1, 1, 128)
(None, 1,1, 1, 128)
(None, 1,1, 1, 128)
(None, 1,1, 1, 128)
(None, 1,1, 1, 128)
(None, 128)
(None, 128)
(None, 128)
(None, 1,1, 1, 128)
(None, 1,1,1,1)
(None, 3, 3, 3, 3)

(None, 3, 3, 3, 128)
(None, 3456)
(None, 3456)
(None, 4096)
(None, 4096)
(None, 4096)
(None, 1)

Total params: 31,342,434 (119.56 MB)
Trainable params: 31,334,370 (119.53 MB)
Non-trainable params: 8,064 (31.50 KB)
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Param #

0
576
0
256

65,664
0

512
131,200
0

512
131,200
0

512

0

0

43,905

0

512

0

13, 824
14,159,872
16,781,312
0

4,097

Connected to

Input Layer
Conv3D-1
Max Pooling 3D-1

Batch Normalization-1
Conv3D-2

Max Pooling 3D-2
Batch Normalization-2
Conv3D-3

Max Pooling 3D-3
Batch Normalization-3
Conv3D-4

Max Pooling 3D-4

Batch Normalization-4

Batch Normalization-4
Global Average Pooling
3D-1

Global Max Pooling 3D-1
Reshape-1

Reshape-2

Dense-1

Dense-2

Dense-1 and Dense-2
Add-1

Batch Normalization-4 and
Activation

Multiply-1

Multiply-1

Global Average Pooling
3D-1 and

Global Max Pooling 3D-2
Add-2

Reshape-3

Multiply-1 and Conv3D-5
Multiply-2

Batch Normalization-5
Flatten

Batch Normalization-6
Dense-5

Dense-6

Dropout



Code Snippets
Download and Extract LUNA22-1SMI Dataset

'wget --no-check-certificate https://zenodo.org/records/6559584/files/instructions.nd

!cp /content/instructions.nd /content/drive/MyDrive/Dataset/LUNA22-ISHI

'uget --no-check-certificate https://zenodo.org/records/6559584/files/LIDC-IDRI_1176.npy

!cp /content/LIDC-IDRT_1176.npy /content/drive/MyDrive/Dataset/LUNA22-ISHI

'uget --no-check-certificate https://zenodo.org/records/6559584/files/LIDC-I0RT_1176.zip

!cp /content/LIDC-IORT _1176.zip /content/drive/MyDrive/Dataset/LUNA22-ISMI

funzip "/content/drive/MyDrive/Dataset/LUNA22-ISMI/LIDC-IORI 1176.zip" -d "/content/drive/MyDriveVDataset/LUNAZZ-ISMI"

import nibabel as nib
import os
import numpy as np

patch_path = '/content/drive/MyDrive/Luna22/Dataset/LUNA22-ISMI/LIDC-IDRI'
patches = os.listdir(patch_path)

print(f"Total number of nodules = {len(patches)}")

print(f"List of nodules = {patches}")

To know the range of pixel/voxel intensity values

1 min =0

2 max = @

3 for i in patches:

4 scan = nib.load(os.path.join(patch_path, i))

5 scan = scan.get_fdata()

6 if min > np.min(scan):

7 min = np.min(scan)

8 if max < np.max(scan):

9 max = np.max(scan)
10  print(f'The minimum pixel values is {min} and maximum pixel values is {max}.")

The minimum pixel values is -3024.2 and maximum pixel values is 6054.0.
For Visualization

# To show the histogram of HU for a patient.
import matplotlib.pyplot as plt
def plot_hu(volume, title=""):
plt.title(title, fontdict = font)
plt.hist(volume.flatten(), bins=4©@, color=°c’)
plt.xlabel("Hounsfield Units (HU)")
plt.ylabel("Frequency™)
plt.show()

# To Visualize a single CT-Scan image slice.

def plot_a_slice(slice, title=""):
plt.title(title, fontdict = Ffont)
plt.axis("on")
plt.imshow(slice, cmap="gray” )
plt.show()
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For Visualization

# To Visualize series number of CT-Scan image slices.

def plot_slices_nifti(volume, start_slice=0):#, save_path="'/content'):
volume = np.rot%@(np.array(volume))
fig, axis = plt.subplots(8, 8, figsize=(15, 15))
slice_counter = start_slice

for i in range(8):
for j in range(8):
axis[i][j].imshow(volume[:, :, slice_counter], cmap="gray")
axis[i][j].axis("off")
slice_counter += 1
axis[i][j].set_title(f"Slice {slice_counter}")
fig.suptitle('CT Scan Patch Slices', fontsize=16)
# plt.savefig(save_path, format="png") # You can specify the filename and format
plt.tight_layout()

Reading and resizing

import os
import numpy as np

import nibabel as nib
import random
from scipy import ndimage

def read_scan{(filepath):
TTT"Read and load wvolume™™"™
# Read file
scan = nib.locad(filepath)
# Get raw data
scan = scan.get__+fdatad()
return scan

def resize_volume(img):
"""Resize across z-axis"""
# Set the desired depth
desired_depth = 64
desired_width = 64
desired_height = 64
# Get current depth
current_depth = img.shape[-1]
current_width = img.shape([8]
current_height = img.shape[1]
# Compute depth factor
depth = current_depth / desired_depth
width = current_width / desired_width
height = current_height / desired_height
depth_factor = 1 / depth
width_factor = 1 / width
height_factor = 1 / height
# Rotate
img = ndimage.rotate(img, 98, reshape=False)
# Resize across z-axis
img = ndimage.zoom(img, (width_factor, height_factor, depth_factor), order=1)
return img
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For splitting the data into benign and malignant

1 lidc_ann = '/content/drive/MyDrive/M Sc_Thesis/Datasets/LUNA22-ISMI/LIDC-IDRI_1176.npy"
2 dataset = np.load(lidc_ann, allow_pickle=True)
3 print(dataset)

[{'SeriesInstanceUID"': '1.3.6.1
{'SeriesInstanceUID"': "1.3.6.1.
{'SeriesInstanceUID': "1.3.6.1

.1.14519.5.2.1.6279.6001.100225287222365663678666836860", 'Voxe
.1.14519.5.2.1.6279.6001.108225287222365663678666836860", 'Voxe
.1.14519.5.2.1.6279.60801.1003981387935405790778263952088", 'Voxe

EE =

1 dataset[e]

{'SeriesInstanceUID': '1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222365663678666836360 ",
'VoxelCoordX': 45,
'VoxelCoordY': 211,
'VoxelCoordZ': 77,
‘Diameter’: [6.97167141, 6.97167141, 7.34878692, 5.94228451],
‘Texture': [5, 5, 5, 5],
‘Malignancy': [4, 2, 4, 2],
'Calcification': [6, 6, 6, 6],
‘Filename’: '1.3.6.1.4.1.14519.5.2.1.6279.6001.100225287222365663678666836860_45_211_77_0000.nii.gz'}

| len(dataset)
1176
1 b_c =@
2 m_c = ©
3 for i in dataset:
a filename = i[ "Filename']
= m = np.median(i[ "Malignancy”])
(53 # t = np.median(i[ 'Texture'])
7 £ if m < 3:
8 b c += 1
o else:
1e m_C += 1
33 print(f"Benign total = {b_c}, Malignant total = {m_c}")
12
13 #print(filename, malignancy, texture)

Benign total = 38, Malignant total = 796

1 import shutil

2 from shutil import copyfile

3 import os

4 1luna22 = '/content/drive/MyDrive/M Sc_Thesis/DatadModel/Luna22 2'
5 os.makedirs(os.path.join(luna22, 'Benign'))

6 os.makedirs(os.path.join(luna22, 'Malignant'))

1 for luna22, dirs, files in os.walk(luna22):

2 for subdir in dirs:

3 print(os.path.join(luna22, subdir))

/content/drive/MyDrive/M_Sc_Thesis/DatadModel/Luna22_2/Benign
/content/drive/MyDrive/M_Sc_Thesis/DatadModel/Luna22_2/Malignant

1 patch_path = '/content/drive/MyDrive/M Sc_Thesis/Datasets/LUNA22-ISMI/LIDC-IDRI'
2 benign_path = '/content/drive/MyDrive/M Sc_Thesis/DatadModel/Luna22_2/Benign’
3 malignant_path = '/content/drive/MyDrive/M Sc_Thesis/DatadModel/Luna22_2/Malignant’
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for i in dataset:
filename = i[ 'Filename’]
s_path = os.path.join(patch_path, filename)
m = np.median(i[ 'Malignancy’])
t = np.median(i[ 'Texture'])
ifm< 3:
d_path = os.path.join(benign_path, filename)
else:
d_path = os.path.join(malignant_path, filename)
copyfile(s_path, d_path )

print(f"Benign total = {len(os.listdir(benign_path))},
[Malignant total = {len(os.listdir(malignant_path))}")

Benign total = 388, Malignant total = 796

For splitting the data into train, validation, and test set (similarly for test and Val)
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benign_scan_paths = [
os.path.join(
os.getcwd(),
"/content/drive/MyDrive/MScThesis/Luna22/Backup/Dataset/Binary class/Benign"”,
X)
for x in os.listdir(
"/content/drive/MyDrive/MScThesis/Luna22/Backup/Dataset/Binary class/Benign")

]

malignant_scan_paths = [
os.path.join(
os.getcwd(),
"/content/drive/MyDrive/MScThesis/Luna22/Backup/Dataset/Binary class/Malignant”,
X)
for x in os.listdir(
"/content/drive/MyDrive/MScThesis/Luna22/Backup/Dataset/Binary class/Malignant™)

]

print("CT scan patches with benign lung tumor: " + str(len(benign_scan_paths)))
print(("CT scans patches with malignant lung tumor: 1+ str(len(malignant_scan_paths)))

scan patches with benign lung tumor: 380
scans patches with malignant lung tumor: 796

# For train
# copy

for i in benign_scan_paths[:3©e4]:
filename = i.split(‘'/")[1e]
d_path = os.path.join(train_dir, ‘'benign’, filename)
copyfile(i, d_path)

for i in malignant_scan_paths[:637]:
filename = i.split("/")[1e]
d_path = os.path.join(train_dir, "'malignant’, filename)
copyfile(i, d_path)

print( 'Done Copying. ")

Done Copying.
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For Augmentation

from scipy import ndimage
#1
def flip(volume):
# Flips the image along two randomly selected axes out of the three dimensions.
axes = tuple(random.sample(range(3), k=2))
augmented_image = np.flip(volume, axis=axes)
return augmented_image
#2
def scale(volume):
# Scales the image by a random factor between 6.8 and 1.2 along each axis independently.
scales = random.uniform(8.8, 1.2)
zoomfactor = (scales, scales, scales)
augmented_image = ndimage.zoom(volume, zoomfactor, order=1)
return augmented_image
#3
def translate(volume):
# Translates the image by a random amount within a range of -18 to 16 pixels along each axis.
shifts = tuple(random.randint(-18, 18) for _ in range(3))
augmented_image = ndimage.shift(volume, shifts)
return augmented_image
#4
def addNoise(volume):
# Adds Gaussian noise to the image with a random standard deviation between 6.85 and 6.2.
noise_level = random.uniform(8.85, 8.2)
augmented_image = volume + np.random.normal(@, noise_level, volume.shape)
return augmented_image

#5
def contrast(volume):
# Applies shear transformation to the image with random shear factors between -0.2 and 6.2 along each axis.
contrast_factor = random.uniform(.9, 1.1)
augmented_image = volume * contrast_factor
return augmented_image
#6
def brightness(volume):
# Adjusts the brightness of the image by a random factor.
# Shifts the intensity values of a 3D image by -30 to 26 factor to make it brighter or darker
brightness_factor = random.uniform(-30, 28)
augmented_image = volume + brightness_factor
return augmented_image
#7
def spline_filter(volume):
# Simulate slight deformations in the image
volume = ndimage.spline_filter(volume)
return volume
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Windowing and Normalizing

def windowing and_normalize(volume):
TUTT"windowing the volume™™™

min = -1eee

max = 40

volume[volume < min] = min
volume[volume > max] = max

TU"Normalize the volume™™™

volume = (volume - min) / (max - min)
volume = wvolume.astype(( " float32")
return volume

def process_scan(path):
"""Read and resize volume™™"™
# Read scan
volume = read_scan{(path)
# Windowing and Normalize
volume = windowing_and_normalize(volume)
# Resize width, height and depth
volume = resize_volume(volume)
return volume

# Training data

ben_train_paths = [
0s.path.join(os.getcwd(),
“/content/drive/MyDrive/MScThesis/Luna22/Dataformodel/train/benign”, x)
for x in sorted(os.listdir(
"/content/drive/MyDrive/MScThesis/Luna22/Dataformodel/train/benign™))

# Folder "Malignant” consist of CT scans having
# patches of lung nodules that are malignant.

mal_train_paths = [
0s.path.join(os.getcwd(),
“/content/drive/MyDrive/MScThesis/Luna22/Dataformodel/train/malignant”, x)
for x in sorted(os.listdin(
| r/content/drive/MyDrive/MScThesis/Lunaz2/Dataformode1/train/malignant"i[:1520])

print("benign in training: " + str(len(ben_train_paths)))
print("malignant in training: " + str(len(mal_train_paths)))
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Converting and Saving as NumPy array for loading the data to the model
(Similar for test and validation

# Read and process the scans.

# Each scan is resized across height, width, and depth and rescaled.
mal_train_scans = np.array([process_scan(path) for path in mal_train_paths])
ben_train_scans = np.array([process_scan(path) for path in ben_train_paths])

# assign 1, for the malignant and assign @ for benign.
mal_train_labels = np.array([1 for _ in range(len(mal_train_scans))])
ben_train_labels = np.array([@ for _ in range(len(ben_train_scans))])

X_train = np.concatenate((mal_train_scans, ben_train_scans), axis=8)
y_train = np.concatenate((mal_train_labels, ben_train_labels), axis=0)

save_data = '/content/drive/MyDrive/MScThesis/Luna22/Dataformodel/nump’
np.save(os.path.join(save_data, 'x_train') , x_train)
np.save(os.path.join(save_data, 'y_train’) , y_train)

def train_preprocessing(volume, label):
“""Process training data by Iadding a channel.™™™
volume = tf.expand_dims(volume, axis=3)
return volume, label

# Define data loaders.
train_loader = tf.data.Dataset.from_tensor_slices((x_train, y_train))
validation_loader = tf.data.Dataset.from_tensor_slices((x_val, y_val))

batch_size = 16

# Augment the on the fly during training.

train_dataset = (
train_loader.shuffle(len(x_train))
.map(train_preprocessing)
.batch(batch_size)
.prefetch(2)

)

# Only rescale.

validation_dataset = (
validation_loader.shuffle(len(x_val))
.map(validation_preprocessing)
.batch(batch_size)
.prefetch(2)
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