

 Improving the Performance of Software-Defined

Network Load Balancer Using Open Flow Based

Multi-Controller Topology

A Thesis Presented

By

Kidist Mitiku

To

The Faculty of Informatics

Of

St. Mary’s University

In Partial Fulfilment of the Requirements

For the Degree of Master of Science

In

Computer Science

June 22, 2022

i

ACCEPTANCE

Improving the Performance of Software-Defined

Network Load Balancer Using Open Flow Based

Multi-Controller Topology

By

Kidist Mitiku Tadese

Accepted by the Faculty of Informatics, St. Mary’s University, in

partial fulfilment of the requirement for the degree of Master of

Science in Computer Science

Thesis Examination Committee:

__

Internal Examiner

External Examiner

__

Dean, Faculty of Informatics

June 22, 2022

ii

DECLARATION

I, the undersigned, declare that this thesis work is my original work, has not

been presented for a degree in this or any other universities, and all sources of

materials used for the thesis work have been duly acknowledged.

Kidist Mitiku Tadese

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

Dr. Asrat Mulatu

Signature

Addis Ababa

Ethiopia

June 22, 2022

iii

ACKNOWLEDGEMENT

First, I gratefully acknowledge to the Almighty of God for the good health and

wellbeing that were necessary to complete this thesis. Next, I wish to express my

sincere thanks to my advisor Dr. Asrat Mulatu for his invaluable sincere advice and

guidance to complete my thesis. Besides, I appreciate my Family, especially my father,

mother, and my brother, for encouraging me to be successful in finishing the research

and always be by my side for any help that I require

Finally, my due thanks go to my boyfriend Bereket Fitsum, who has constantly

encouraged, and provided me helpful ideas.

I also place on record, my sense of gratitude to one and all, who directly or indirectly

have put their hands in this venture.

iv

TABLE OF CONTENTS
Table of Contents

ACKNOWLEDGEMENT .. iii

TABLE OF CONTENTS .. iv

LIST OF ACRONYMS .. vi

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

ABSTRACT .. ix

CHAPTER ONE .. 1

1. INTRODUCTION ... 1

1.1. Background .. 1

1.2. Statement of the problem ... 1

1.2.1. Research Questions .. 2

1.3. Objective of the Study.. 2

1.4. Scope and Limitation of the Study ... 3

1.5. Significance .. 3

1.6. Methodology .. 4

1.7. Related Works .. 6

1.7.1. Summary of related works ... 10

1.8. Thesis Organization ... 12

CHAPTER TWO ... 13

2. SDN OPEN FLOW MODEL ... 13

2.1. Overview of Software Defined Networking .. 13

2.2. Software-Defined Network .. 15

2.2.1. Open Flow .. 16

2.2.1. Benefits of Open Flow-Based Software-Defined Networks 16

2.3. Open Flow Architecture ... 18

2.3.1. Open Flow Controller .. 19

2.3.2. The Open Flow Switch .. 21

2.3.3. Open Flow Ports .. 21

2.3.4. The Open Flow Protocol .. 22

2.3.5. The Controller-Switch Secure Channel ... 23

2.3.6. Open Flow messages .. 24

2.4. Load Balancing Techniques in SDN .. 27

CHAPTER THREE ... 29

3. ANALYSIS OF EXISTING SDN BASED LOAD BALANCERS 29

3.1. Load balancing Algorithms ... 29

v

3.2. Performance analysis based on different Algorithms .. 30

3.3. Performance analysis based on different Topology ... 33

CHAPTER FOUR .. 37

4. PROPOSED OPEN FLOW BASED MULTI-CONTROLLER TOPOLOGY................ 37

4.1. Proposed Network topology... 37

4.2. Proposed Load Balancing Algorithm ... 38

4.3. Performance Evaluation Metrics for the Proposed Topology 39

CHAPTER FIVE ... 41

5. PERFORMANCE EVALUATION ... 41

5.1. Simulation Setup .. 41

5.2. Results and Observations ... 44

5.3. Results and Observations for Topology 1 .. 44

5.4. Results and Observations for Topology 2 .. 49

5.5. Results and Observations for the proposed multi-controller Topology (Topology

3) …………………………………………………………………………………..53

5.6. Comparative Analysis of Results ... 58

CHAPTER SIX .. 60

6. CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORKS 60

6.1. Conclusions .. 60

6.2. Contributions .. 60

6.3. Future Works ... 61

REFERENCES .. 62

APPENDICES ... 66

vi

LIST OF ACRONYMS

API Application Program Interface

SDN Software Defined network

CPU Central Processing Unit

CRM Customer Relation Management

RAM Random Access Memory

HTTP Hyper Text Transfer Protocol

IT Information Technology

IP Internet Protocol

ID Identification

DNS Domain Name Systems

QoS Quality of Service

IEEE International Electronic and Electrical Engineers

GUI Graphical User Interface

OVS Open Virtual Switch

DCN Data Centre Networks

SATCOM Satellite Communication Networks

SAT Satellite

MB/sec Megabyte per second

OF Open Flow

SLA Service Level Agreement

GUI Graphical User Interface

IANA Internet Assigned Numbers Authority

ToS Type of Service

TCP Transmission control protocol

UDP User datagram protocol

ODL Open day light

vii

LIST OF FIGURES

Fig 2-1 SDN Architecture [10] .. 14

Fig 3-1 SDN based server cluster load balancing topology [13] ... 31

Fig 3-2 Response time graph [13] .. 31

Fig 3-3 Transaction rate graph [13] ... 32

Fig 3-4 Throughput graph [13] .. 33

Fig 3-5 Design topology one [36] .. 34

Fig 3-6 Design topology two [36] .. 34

Fig 3-7 Topology three [36] ... 35

Fig 4-1 SDN based multi-Controller load balancing topology .. 37

Fig 5-1 Topology 1 .. 42

Fig 5-2 Topology 2 .. 43

Fig 5-3 Topology 3 .. 44

Fig 5-4 Response time graph ... 45

Fig 5-5 Topology 1 Transaction rate ... 47

Fig 5-6 Topology 1 Throughput .. 48

Fig 5-7 Response Time for Topology 2 ... 50

Fig 5-8 Topology 2 Transaction rate ... 51

Fig 5-9 Throughput for topology 2 .. 53

Fig 5-10 Topology 3 Response time .. 55

Fig 5-11 Transaction rate for topology 3 ... 56

Fig 5-12 Topology 3 Throughput .. 57

Fig A- 1 Creating Multi controller Topology .. 66

Fig A- 2 Connecting to Multi-Controller and adding hosts ... 66

Fig A- 3 Running Random Load Balancing Algorithm on Controller one 67

Fig A- 4 Running Rando Load balancing algorithm on controller two 67

Fig A- 5 creating 8 hosts using Xterm ... 68

Fig A- 6 connecting h7 as a client node ... 69

Fig A- 7 Sharing a load on Open flow based Multi-Controller ... 69

Fig A- 8 running the two load balancers to share a client load on Multi-Controller 70

file:///C:/Users/Kidist/OneDrive/Desktop/Kidist%20Mitiku/Kidist%20Mitiku%20Thesis%20-%20After%20Defense%20-%20Copy.docx%23_Toc107823391
file:///C:/Users/Kidist/OneDrive/Desktop/Kidist%20Mitiku/Kidist%20Mitiku%20Thesis%20-%20After%20Defense%20-%20Copy.docx%23_Toc107823399

viii

LIST OF TABLES

Table 1-1 Summary of related works ... 10

Table 3-1 Output time for requests using Open Flow [36] .. 36

Table 3-2 Output time for requests without Open Flow [36]... 36

Table 5-1 Topology 1 Response Time ... 45

Table 5-2 Topology 1 transaction rate .. 46

Table 5-3 Topology 1 throughput ... 48

Table 5-4 Topology 2 Response time .. 49

Table 5-5 Topology 2 transaction ... 51

Table 5-6 Topology 2 throughput (MB/sec) ... 52

Table 5-7 Proposed Topology Response Time/sec .. 54

Table 5-8 proposed topology transaction rate ... 56

Table 5-9 proposed topology throughput ... 57

Table 5-10 Comparative analysis for Response time ... 59

Table 5-1 1 Comparative analysis for Transaction rate ... 59

Table 5-1 2 Comparative analysis for Throughput .. 59

ix

ABSTRACT

Due to the emergence of internet of things and 5G networks there's an

enormous pressure on the underlying communication networks in terms of demand,

performance requirements and dynamic management. To manage incoming traffic, a

load balancing technology is assigned to server clusters. In traditional networks routing

protocols forward traffic in keeping with the shortest path to reduce cost. This

might result in abnormal distribution of traffic causing overloading of communication

links. Recently Software Defined Networks (SDNs) has become increasingly popular

and potential candidate to beat traditional networks limitations.

Software Defined Networks (SDNs), described by an ideal separation of the control and

data planes, is being approved as a distinct paradigm for complex network

management. In this research work, performance analysis is performed on random,

round robin, weighted round robin and least load balancing algorithms in terms of

response time /sec transaction rate (trans/sec) and throughput (MB/sec). Moreover a

new Open Flow Model based Multi-Controller Topology is proposed and, the proposed

topology is able to reduce the response time (sec) by an average of 30.12%, increase

the transaction rate (trans/sec) by an average of 39.44% and also increase the

throughput (KB/sec) by an average of 10.56% when compared with a single controller

topology using random load balancing algorithms in SDN POX controller.

Keywords: Software Defined Networks, Load-balancing Algorithm, Open Flow Model,

 Multi controller.

1

CHAPTER ONE

1. INTRODUCTION

1.1. Background

Traditional networks suffer from network management issues because network

hardware devices, like switches, routers, and Load balancers, are all vendor specific.

For that reason, those devices have tightly coupled control and data planes. So, it is not

easy to change their functionality without using a vendor specific network management

system [1].

 To mitigate the shortcomings of traditional networks, researchers have proposed

solutions like software defined networking (SDN) [2], [3], [4] and [5]. As an innovative

networking technology that provides (logical) centralization of programmable network

control, SDN [6] has been tried to several load balancing and traffic engineering

systems [7] SDN allows the flexibleness for one to style and implement own load

balancing strategies.

Algorithms vary widely, looking on whether a load is distributed on the network or

application layer. Effectiveness of Load distribution mechanism, performance and

business continuity can be affected by Algorithm selection. Optimizing network

performance in SDN, like several other network, is the need to seek out the foremost

load balancing strategies [8].

1.2. Statement of the problem

Load balancing technology is used to ensure better traffic management in server

clusters by assigning servers using various server cluster load balancing algorithms.

Load balancing performance has become a necessity in networks because of continuous

traffic volume increase, user demand growth, and applications’ complexity. So, it is

important to enhance the performance of the Load balancer. Researcher in [13]

evaluates, the performance of load balancer algorithms like round robin, weighted

round robin and least load server cluster load balancing algorithms using software

defined networking open Flow model by providing Ethio telecom’s data enterprise shop

customers relation Management system users’ as an input.

2

But still the performance of SDN based load balancers needs to be enhanced. Major

research challenges stated in [14] with currently available load balancers are, Poor

system performance due to poor traffic load management in the controller and the

problem of unmanaged heterogeneous traffic in the network. To alleviate this problem

this study targeted to evaluate the performance of load balancing algorithms like

random, round robin ,weighted round robin and least load balancing Algorithms in

order to identify a better load balancing algorithms in terms of three (3) network

performance parameters such as response time/ sec, transaction rate (trans/sec) and

throughput (MB/sec) in SDN network. And also deal with improving the performance

of SDN based load balancers.

1.2.1. Research Questions

This study attempts to address the following basic research questions.

 Which load balancing algorithm is better in terms of network performance

parameters such as response time (sec), transaction rate (trans/sec) and

throughput (MB/sec) in SDN Network?

 Which SDN model is used for creating a multi-controller topology?

 Which SDN network topology is better for having a better load balancing

performance?

 What results are obtained when the current research result is compared against

the prior related research works done on SDN load balancing performance?

1.3. Objective of the Study

1.3.1. General Objective

The general objective of this research is improving the performance of SDN load

balancer using Open Flow based multi-controller topology.

1.3.2. Specific Objectives

Based on stated general objectives the following specific objectives are presented.

 Analyse the performance of SDN load balancing algorithms based on existing

network topology.

 Review existing related works and techniques.

3

 Propose a new topology that improves the performance of SDN load balancing

algorithms in terms of response time (sec), transaction rate (trans/sec) and

throughput (KB/sec).

 Compare the result obtained using proposed multi-controller topology against

the Single controller network topology.

1.4. Scope and Limitation of the Study

1.4.1. Scope

The Scope of this study will be SDN architecture with open flow model and analysis

of four load balancing algorithms namely Random, round robin, weighted round robin

and least load balancing algorithm which is going to be simulated on mininet 2.3.0

and run on POX controller and connected on OpenVswitch with Open Flow Protocol

10 and the load is tested by using siege 3.0.8 tool based on generating ten to seventy

(10-70) concurrent requests of clients to 6 servers and finally the performance

parameters that are used for the evaluation are response time (sec), transaction rate

(trans/sec), throughput (MB/sec).

1.4.2. Limitation

This Work is only limited to POX Controllers in which only the Open Flow model is

used to connect a multiple POX controller on a single switch. And only ten to seventy

(10-70) concurrent client requests are used to test the load on the Siege Tool, in order

to answer a research question.

1.5. Significance

Due to the fast growth in usage of network-based services such as customer relation

management system, domain name system, email, etc., there is a huge demand on server

clusters. For effective network traffic management load balancing algorithms are used

in order to distribute the incoming traffic load to a number of servers to get a better

response from servers. Analysis of load balancing performance is necessary to choose

appropriate algorithms in terms of a better response time, transaction rate and

throughput to increase capacity (concurrent users) and reliability of applications. A

better load balancing algorithm improves the overall performance of applications by

decreasing the burden on servers associated with managing and maintaining application

and network sessions, as well as by performing application-specific tasks.

4

1.6. Methodology

In order to achieve the objective of this research, two types of research methodology is

used,

SDN open flow model as a system model, simulation and analysis of results.

System model:

 The system Model used in this study is SDN Open Flow Model

 A southbound interface between the control layer and Infrastructure Layer of

SDN Open Flow Model Used is Open Flow Protocol.

 Python programming language Application Programming Interface (API).

Simulation: The simulation environment that has been used in this research is,

 Desktop with Intel(R) Core (TM) i3-3220 CPU@3.30GHZ,10.0GB RAM

which has 64-bit operating system

 Oracle virtual box 6.0.24 is used as a hypervisor to run Ubuntu 16.04 Linux

operating system.

 SDN POX controller have installed inside Ubuntu 16.04 Linux operating

system

 MININET 2.3.0 is used to emulate the network

 SIEGE load test tool Version 3.0.8 is also used.

 XMING allows the use of Linux graphical applications remotely.

 Ten to seventy (10-70) concurrent client requests are generated by SIEGE load

test tool.

Analysis of results: The results and observations from the simulation are analysed and

the performance of the SDN load balancing algorithms are evaluated and reported. The

performance parameters that are used for the evaluation are response time (sec),

transaction rate (trans/sec), throughput (MB/sec). Then a better load balancing

algorithm is selected for further analysis and finally using multiple pox controllers on

a single switch with different port which is a new topology, re analysis of load balancer

performance is done and the result and comparison is reported in the form table and

graphical representation.

5

1.6.1. SDN Open Flow model

Among the four models of SDN (SDN Open Flow model, SDN over relay model,

hybrid model and API SDN), SDN Open Flow model is chosen to be investigated in

this study due to it provides network programming ability from the centralized view

through the modern and extensible API and, it separates the control and data planes.

1.6.2. Mininet Emulator

Mininet is an emulator that allows researchers to deploy large networks on a limited

resources like one computer or virtual machine for the use of SDN network and Open

Flow. And also mininet provides a realistic service with a minimum cost.

In addition, it enables running unadulterated code collaboratively on virtual hardware

using a simple personal computer.

The other possible way to simulate an SDN networks is using hardware test bed which

is accurate and fast but very expensive and shared. And also the other option is using

simulator which is cheap but every so often got slow and requires code alteration.

Mininet provides ease of use, performance accuracy and scalability [16].

1.6.3. Software defined controller: POX

POX is an Open Flow controller which is developed using python programming

language that is essentially built to provide a coherent and easy environment in SDN

network for investigation and survey. POX controller depends on a component-based

model in which some of ongoing work to assist building of the emerging SDN platform

in which the whole network components and activities are acknowledged as discrete

components that are able to be isolated and utilized when it is necessary.

POX can be applied in different fields such as distribution prototyping and exploration,

SDN debugging, network utilization, controller design and programming models [17].

POX controllers are used as an abstraction layer between network application and the

network infrastructure.

1.6.4. Load testing tool: Siege

Knowing how much traffic a load balancer server can handle when under stress is

essential for planning the future improvement of load balancers. By using tool

called siege, it is possible to run a load test on a server and see how the system performs

under different circumstances.

https://www.tecmint.com/apache-performance-tuning/

6

Siege is used to evaluate the amount of data transferred, response time, transaction rate,

throughput, concurrency and how many times the server returned responses. Siege

offers three modes of operation: Regression, internet simulation, and brute force [18].

Towards this research evaluation, internet simulation of siege tool is used for concurrent

users

1.6.5. Miniedit

Miniedit is a simple GUI editor for Mininet. And it allows you to simply drag and drop

hosts and switches. And also, Miniedit is an investigational tool designed to indicate

how Mininet can be enlarged.

1.6.6. Xming

Xming is an open-source application which is used to access a Linux graphical

application remotely.

1.7. Related Works

According to [24], SDN is very flexible, enabling the installation of company-defined

software based on White box switch. It further allows the configurations of

infrastructures to fulfil the network requirements and decrease expenses related to

deployment and management.

According to researcher in [26], SDN load balancer overcomes various limitations such

as cost and flexibility of traditional load balancers which are caused by the usage of

dedicated hardware’s. Unlike the traditional load balancers in SDN the Open Flow

device is converted into a powerful load balancer by programming its controller. As in

many cases with the help of most commercial load balancers, load balancer can also be

a single point of failure and to eliminate those problem in future the study suggests

using multiple controllers instead of single controllers. One of the showcases for this

recommendation the study put an exemplary scenario of controller failing. In this case

using multiple controllers helps the machine to take over the role of failed controller

and continue routing traffic.

A study [13] simulated Round robin, weighted round robin and least load server cluster

load balancing algorithms using SDN Open Flow model in open source POX controller

and Open Flow switches in mininet for topology creation on the principles of SDN. The

obtained results have compared in terms of network performance parameters: response

7

time (sec), transaction rate (trans/sec) and throughput (MB/sec) by increasing the

number of ethio telecom enterprise shop customer relation management system users’

as input data. Hence, the researcher concluded that Round robin algorithm is better than

weighted round robin and least load server load balancing algorithms in terms of

response time (sec), transaction rate (trans/sec), throughput (MB/sec).

In addition, in [13] the research uses a simulation topology with three(3) clients and

three(3) servers using mininet in the infrastructure layer with the open flow switch,

software defined POX controller connected to the open flow switch using open flow

protocol in the south bound interface of the SDN open flow model. Moreover, clients

send ten to seventy (10-70) concurrent requests through the internet and the servers are

connected to the open flow switch.

Another study [17] investigates the impact of increasing the workload requests from 0

up to 180 requests per second (req/sec) in order to explore average network throughput

under the implementation of static, dynamic load balancing algorithms by the POX

controller. The study mainly focused on the utilization of HTTPerf by considering that

it provides a flexible facility for the generation of various HTTP workloads as well for

the measurement of server performance. And the research put a finding that as the

number of requests increases the throughput increases as well. Dynamic least

bandwidth-based load balance scheme has shown a remarkable improvement in terms

of average network throughput up to 8%, 3.3% and 2.56 %, as compared with static

load balancing schemes like random, round-robin and weighted round-robin. However,

Dynamic least bandwidth recorded a slight ineffective progress. Less than 1 % was

recorded when a comparison was conducted with dynamic least connections, this

directed the researcher to the fact that their performance was almost the same.

Moreover, a research work in [25] puts Software-Defined Networking (SDN) as a key

factor to improve traffic distribution and Quality of Service (QoS) in large scale

networks. However, load balancing is the main technology area that must be efficiently

implemented associated with efficient resource management and utilization challenges.

In this work, four topologies have been proposed: 2Q1L, Multiple, 1Q2L, and 2Q2L.

The proposed topologies are simulated using the OFSwitch13 module of the ns-3

network simulator in different scenarios. All proposed topologies outperform the

Chavez topology [28] in terms of load balancing However, 2Q1L topology presents

8

the best performance in different simulation scenarios. Besides, the simulation results

determine the threshold values of effective parameters leading to the best load

balancing on the servers. These variables are the number of flow tables and switch CPU

processing capacity. Therefore, the proper selection of the effective parameters can

provide satisfying performance with minimum cost.

Another study [31] undergoes a performance comparison of two python-based Software

Defined Network (SDN) controllers i.e. POX and Ryu under different network

topologies such as Single, Linear, Tree, Dumbbell, Data Centre Networks (DCN) and

Software-Defined naval networks which use satellite communication systems

(SATCOM) i.e. SDN-SAT [32]. Laboratory results, validated through Mininet has

clearly indicated that Ryu has remarkable performance i.e. A TCP throughput increase

of 25.56%, 282.54%, 44.85%, 19.88%, 45.45% and latency decrease of 93.48%,

99.96%, 99.90%, 97.08%, 99.33% in single, linear, tree, dumbbell and DCN topologies

respectively. Similarly, in SDN-SAT topology Ryu has 0.21% increase in TCP

throughput and 34.62% decrease in latency as compared to POX controller.

A novel algorithm also proposed for the purpose of load balancing for an SDN-based

datacentre [33]. In this work, mininet emulator has been implemented for the purpose

of emulating the proposed system, the suggested algorithm added to the POX controller.

To evaluate the algorithm, the study simulated a datacentre with a Fat-Tree topology

(k=4). The algorithm proposed to dynamically balance the load by means of re-routing

utilizing the information at the SDN controller. The network performance evaluated in

terms of throughput, loss, and received data size with and without applying the

proposed algorithm. Accordingly, results showed that the proposed algorithm

outperforms the traditional load balancing scheme as follows; improves the throughput

by a minimum of 21.9%, reduces the loss by 88.2%, and increases the received data

size by 20.8 %.

The researchers in [34] proposes, the application of SDN-based Load Balancing by

implementing predefined servers in the server-farm that receive the arrived Internet

Protocol (IP) data packet from multiple clients with equal amount of loads and executes

orders for each server. As a showcase, experiments have been conducted using Mininet

and based on several scenarios as follows:

9

Scenario A, the topology is based on a simple design, which consists of four clients and

two servers. The controller was created using an Open Flow controller. The topology

consists of a switch controller, two servers and four hosts and gives a high throughput,

Scenario B (The second scenario consists of four clients, and there are four server pools

connected to the switch controller, which is the Open Flow controller. Each host is

located at a dedicated server, which helps to increase the output performance).

And Scenario C (The third scenario consists of one switch controller connected to the

four server pools, which support eight clients. The design is like the previous two

topologies, but there is an additional number of clients. The load balancers lag in these

design topologies where the response time and latency increase the load balancers) of

network topologies in which each uses several servers and multiple clients connected

to the servers to produce a different outcome, which is evaluated based on the delay,

jitter and throughput parameters.

Finally, findings indicated that scenario A scenario B and C Produce a low jitter value

and scenario C produces the lowest delay. SDN results a multi-path direction to reach

the best route for a remarkable network performance.

Another researcher in [35] has proposed, a fabric topology to provide a flexible data-

centre network. With SDN controllers and has the potential to address critical issues

such as bandwidth utilization and network capacity in datacentre networks. In addition,

the proposed network fabric consists of various key components: SDN controller,

commoditized switches, and host machines. All switches arranged to form a switch

pool and connected to a certain number of switches based on performance requirements.

 The SDN controller acts as a centralized manager by connecting the switch pool and

collects network statistics at run-time, in addition, the host machines connected to

switches via their Ethernet interfaces, and this makes fabric topology a critical part of

proposed networks. According to this the major physical devices in such networks are

low-cost and commoditized switches in relative and there is no definite hierarchy in the

proposed network. The flat architecture gives datacentre networks more flexibility in

bandwidth utilization and packet re-routing. Moreover, the network fabric enables the

switches to have acceptable amount of workload.

10

Researcher in [36] has evaluated the performance of the SDN load balancers and

compared the latency as well as the response time for the design topologies. There is

slight time difference on different topologies.

The goal of this project is to design an efficient load balancer using SDN; the design

topology consists of the SDN-switch and an Open Day Light (ODL) controller. The

flow table holds packet entries which are recorded in the data plane. This project

demonstrated a regulated controller using ODL by separating the data plane and the

controller. In addition to this the requests from different clients will be directed to

various predefined servers in the Round-Robin fashion. This project implements load

balancing using the SDN controller and results reduced response time as well as latency

successfully.

According to the study the evaluation attributes are latency and response time. These

two important factors determine how the SDN load balancer’s function when there is a

complexity in design topology. In this project, different design topologies are analysed

to demonstrate the SDN load balancer functionality. To evaluate the performance the

design topologies are compared with and without using Open Flow. In each case, the

number of requests is increased for different design topologies and output time is

noted. Similar designs topologies are considered without using Open Flow and output

times for requests are noted.

1.7.1. Summary of related works

Table 1-1 Summary of related works

Authors Purpose of the

study

Methodology Performance

metrics

Topology used Result and

observation

Wubishet Performance

analysis of round

robin, weighted

round robin and least

load balancing

algorithms

SDN Open

Flow Model

Response time,

transaction

rate,

throughput

3 clients, 3

servers, one Open

Flow switch and

one POX

controller

Round robin

algorithm has a

better

performance

Haeeder

Munther,

Mahdi Nsaif

Evaluating the

operational

performance of POX

controller for SDN

environment

SDN

Open Flow

Model

service Delay,

utilized

bandwidth,

latency and

throughput

One POX

controller

connected to

eight switches

and eight clients

Recommendatio

n of using POX

controller for a

better specified

performance

metrics.

11

connected to

them.

Hamid

Nejadnik,

Rasool

Sadeghi,

Sayed

Mahdi

Study of various

topologies with the

control placement

problem influencing

load balancing

solutions

SDN Open

Flow Switch

13

number of flow

tables and

Switch CPU

processing

capacity.

four topologies

have been

proposed: 2Q1L,

Multiple, 1Q2L,

and 2Q2L

2Q1L topology

presents the best

performance in

different

simulation

scenarios in

which the

topology

consists of three

controller, three

switches , Two

servers and three

clients,

Mohammad

reza

Ashouri and

Shirin

Setayesh

Enhancing the

Performance and

Stability of

SDN Architecture

with a Fat-Tree

Based

Algorithm

SDN Open

FLow

methodology

throughput,

loss, and

received data

size

a Fat Tree

topology with 64

hosts, 8 switches,

and a central

FloodLight

controller

central

distribution

controllers are

used to

balancing the

load

Between

network

components.

Omran M.

Alssaheli,

Zainal

Abidin,

Zakaria,

Abal Abas

SDN based Load

Balancing for

Network

Performance

Evaluation

SDN Open

Flow Model

throughput,

delay and jitter

Three different

topologies are

used for analysis

The topology,

which consists

of four clients

and two servers.

With one

controller shows

large number pf

throughput as

the number of

clients increase.

Venkatesh

Kodela

Improving Load

balancing

mechanisms of SDN

using Open Flow

SDN Open

Flow Model

Latency and

response time

Three designs

Are considered to

test the efficiency

of the load

balancers with

and without open

flow model.

proves that the

use of Open

Flow

Performs load

balancing more

efficiently.

12

1.8. Thesis Organization

This thesis is divided into 6 chapters. The thesis is introduced in the first chapter. It

includes Background information, a statement of the problem, objectives,

methodology, literature review and related works which studies more about SDN Open

Flow Model and related works proposing topology improve the SDN load balancing

and summary of related works are also included in chapter one. Chapter two deals with

The SDN Open Flow Model and detailed Architecture of SDN Open Flow model. The

third Chapter is all about analysis of existing SDN load balancers focusing on analysis

of load balancing algorithms and analysis based on different topologies. Chapter four

deals with the proposed Open Flow based multi-controller topology, the proposed load

balancing algorithm and the network performance metrics that are going to be used for

evaluating the performance of load balancing algorithms.

Chapter five shows the performance analysis of four load balancing algorithms and

three different topologies in which one of the topologies is the proposed multi-

controller topology. The simulation setup and the comparative analysis of results are

also discussed in this chapter.

The last chapter is chapter six, and it deals with conclusions, contributions, and

recommendations for future works.

13

CHAPTER TWO

2. SDN OPEN FLOW MODEL

2.1. OVERVIEW OF SOFTWARE DEFINED NETWORKING

Software-defined networking (SDN) architecture is designed to make network

management easier and more flexible. SDN centralization of management is achieved

by abstracting the control plane from the data forwarding function in the discrete

networking devices.

An SDN architecture delivers a centralized network based the following components.

 A controller, the basic component of an SDN architecture, that enables

centralized control, automation, and control, automation, management,

and policy enforcement across physical and virtual network

environments

 Southbound APIs transmit information between the controller and the

individual network devices (such as switches, access points, routers, and

firewalls

 Northbound APIs transmit information between the controller and the

applications and policy engines, to which an SDN looks like a single

logical network device [9].

SDN architecture is composed of three layers, the infrastructure layer, the

control layer, and the application layer, which is illustrated in Figure1.1 Each of

these layers performs specific functions and interacts with each other using

interfaces.

14

a) Infrastructure layer

Starting with the infrastructure layer, it has all the physical network elements like a

switch, router, OpenVswitch wireless access point etc. These devices' primary

functions are to receive the request from the client and forward the data to the next

layer, i.e., to the control layer. The data plane of these network components moves it to

the controller in the flow tables by following the rules. The controller is the key element

to define and install the rules in the switches [11].

b) Control Layer

The control layer is an intermediary between the lower and upper layers of the

architecture. SDN controller is a decision-making module in this layer to balance the

load to improve performance. It is also responsible for configuring, managing, and

controlling the network elements by communicating with them using flow messages. It

offers an abstract and centralized view of the layer of infrastructure [11].

 c) Application Layer

In this layer there are all the end-user applications with their network requirements, and

they use a north bound interface to communicate with the control layer. There are

 Fig 2-1 SDN Architecture [10]

15

different north bound interfaces and some of them are pyretic, REST API, Frenetic,

Procera etc. SDN also allows full network access via one programmable

controller, irrespective of whether the network is within the cloud or physically present.

The interaction between the networking device and also the controller is completed

through Open Flow messages. Flow messages are of various categories.

 Status: Controller checks the status of network devices like flow _status, port_

status, queue _status, group_ status and table_ status.

 Connection: An echo request and reply message are exchanged between the

networking device and controller to verify whether the controller is active or not.

 Asynchronous: Asynchronous messages reach the controller via the networking

system from the configured switch to remove the flow rule from the networking

device, configure and apply failure, port up / down [11].

2.1.1. Expected benefits of SDN

SDN Network is expected to provide visibility over the network state and enable service

assurance. And also minimize administration overhead of managing networks.in

addition it supports agility to adapt and adjust according to the need of administrators

using a centralized controller.

Other expectations of SDN can be

 Rearrange the network according to the need or dynamically to provide services

or meet defined Service Level agreement.

 Configure the network to allow or deny traffic patterns (i.e., traffic steering).

 Configure the network to meet the demand of new workloads, and automatically

allow cross-workload communication.

 Remove the service particular network configuration when it is disarmed, and

re arrange affected network elements accordingly [15].

2.2. SOFTWARE-DEFINED NETWORK

Software defined networking (SDN) architecture allow a centralization of network

control and management. And also provides an easy scaling and change

implementation. There are four types of SDN networks are defined below:

16

 Open SDN: in open SDN, virtual and physical devices which are responsible

for routing the data packets are controlled and managed by open protocols.

 API SDN: Use southbound API programing interface In order to control the

flow of data to and from each device.

 Overlay Model SDN: It is an SDN and network virtualization method, which

allows running a logically separate network on existing network.

 Hybrid Model SDN: SDN and traditional networking are combination of

Hybrid model SDN, allowing the optimal protocol to be allocated for each type

of traffic and is often used as a phase-in approach to SDN [29].

2.2.1. Open Flow

Open Flow (OF) is the former software defined networking standard that can better

adapt to changing business requirements. And open flow allows the forwarding plane

of network infrastructures such as switches and routers, both physical and virtual

(hypervisor-based) to directly interact with SDN Controller.

In SDN network, SDN Controller is like a brain, delivering information to network

devices such as switches and routers via southbound APIs and the applications and

business logic via northbound APIs.

SDN controller casts down changes to the network devices like switch/router, flow-

table allowing network administrators to partition traffic, control flows for optimal

performance, and start testing new configurations and applications through Open Flow

protocol. In which any device that needs to communicate with SDN controllers in an

OF environment must support Open Flow protocol [27].

The open flow explain both the communication protocol between SDN control plane

and the SDN data plane, and also the behavioural part of data plane. The open flow

protocol also explains the message format that is interchanged between device (data

plane) and control plane (controller).in addition the open flow defines how the device

should react and respond to commands from the controller in various situations [30].

2.2.1. Benefits of Open Flow-Based Software-Defined

Networks

The open flow-based SDN technologies allow IT to address the dynamic nature of

today's applications, high-bandwidth, adapt the network to ever-changing business

needs and significantly reduce management complexity and operations.

17

The benefits that carriers and enterprises achieve through an open flow based SDN

architecture include:

 Centralized control of multi-vendor environments: SDN control software

can control any open flow enabled network infrastructures from any vendor,

including virtual switches, routers and switches. Rather than controlling groups

devices from individual vendors, IT can use SDN-based orchestration and

management apparatus to quickly deploy, update devices and configure across

the entire network.

 Reduced complexity through automation: The SDN-based open flow provide

good management framework and the resilient network automation, which help

in order to develop apparatus that automate tasks that are done manually today.

This will help to decrease network instability and reduce operational overhead

and support the arising IT and self -service provisioning models.

Moreover with SDN, Cloud based applications can be managed through

provisioning systems and intelligent orchestration in order to reduce operational

overhead while increasing business agility

 Higher rate of innovation: SDN adoption accelerates business innovation by

allowing IT network operators to literally program-and reprogram-the network

in real time to meet specific business needs and user requirements as they arise.

By virtualizing the network infrastructure and abstracting it from individual

network services, for example, SDN and Open Flow give IT- and potentially

even users-the ability to tailor the behaviour of the network and introduce new

services and network capabilities in a matter of hours.

 Increased network reliability and security: An open flow based SDN

architecture banish the need to individually configure network devices each

time, a policy change or service application is added or removed which

minimizes the probability of network failures due to lack of consistent policy

configuration.

Because of SDN controllers provide complete visibility and control over the network it

is possible for IT to define high-level configuration and policy statements in order that

is translated down to the infrastructure through open flow. So that they can ensure that

access control, quality of service, security, traffic engineering and other policies are

18

enforced consistently across the wired and wireless network infrastructures, campuses,

and data centres.

Consistent configuration minimized operational cost, more dynamic configuration

capabilities with minimized error gives a better advantage for Enterprises and carriers.

More granular network control: By decoupling the network control and data planes,

open flow based SDN architecture abstracts the underlying infrastructure from the

applications that use it. Open flow's flow-based control model allows IT in order to

apply policies at a very grainy level, including the user, device and application levels,

session in a highly abstracted, automated fashion. So that this control enables cloud

operators to support multi-tenancy while maintaining traffic isolation, security, and

elastic resource management when customers share the same infrastructure. Allowing

the network to become as programmable and manageable at scale as the computer

infrastructure that it increasingly resembles.an SDN approach fosters network

virtualization, enabling IT staff to manage their servers, applications, networks and

storage with a common approach and device set [19].

2.3. OPEN FLOW ARCHITECTURE

Open flow is defined by the open networking foundation in which it supports a

multivendor standard and The Open Flow architecture is composed of 3 basic

components listed below.

 The Open Flow controller.

 The Open Flow device (Switch)

 The Open Flow Channel.

19

Fig 2-2 Open Flow Architecture [20]

2.3.1. Open Flow Controller

In order to achieve better forward performance in the open flow approach, the network

devices should kept simple so that the network control is done by controller. The open

flow controller build up all open flow devices, monitors the overall status of the entire

network and maintains topology information [20].

The controller can manage flow entries proactively and reactively using open flow

protocol. In which e controller controls the switch using the open flow protocol [19].

The Open Flow control plane is different from the traditional control plane in terms of

three different cases. The first is the ability to program distinct data plane components

with a common Open Flow standard language. The second case is that the control plane

and the data plane are on a separate hardware device because of the controller’s ability

to program data plane elements remotely over the internet, unlike of the legacy switches

which exists on the same physical box. Thirdly, the controller’s ability to program

multiple data plane elements from a single control plane.

programming all the packet-matching and forwarding rules in the switch is the

responsibility of The open flow controller Considering that traditional router would run

routing algorithms in order to determine how to program its forwarding table. Any

changes that result in re-computing routes will be programmed onto the switch by the

controller [21]. An Open Flow controller uses the Open Flow protocol to talk to Open

Flow switches. The interface that connects them is referred to as an Open Flow channel.

20

Certainly, multiple Open Flow channels are possible if an Open Flow switch is

managed by multiple controllers. The Open Flow channel can be either encrypted using

TLS (Transport Layer Security) or directly over TCP using the default port 6653

approved by IANA [30].

SDN controllers that support Open Flow software includes:

 NOX: NOX is a Network Operating System that provides control and

visibility into a network of Open Flow switches. It supports concurrent

applications written in Python and C++, and it includes a number of sample

controller applications.

 Beacon: Beacon is an extensible Java-based Open Flow controller. It was

built on an OSGI framework, allowing Open Flow applications to be built

on the platform to be started, stopped, refreshed, and installed at run-time,

without disconnecting switches.

 Trema: Originally named Helios, Trema is an extensible Open Flow

controller built by NEC in the programming languages of Ruby and C,

targeting researchers.

 NEC Programmable Flow: Trema is the foundation for the Programmable

Flow from NEC. Programmable Flow automates and simplifies network

administration for better business agility, and provides a network-wide

programmable interface to unify deployment and management of network

services with the rest of IT infrastructure.

 Lumina SDN Controller: In December 2017, Lumina released the Lumina

SDN controller 7.1.0, which supports Open Daylight Nitrogen (the seventh

Open Daylight platform). It also has support for Open Daylight’s Karaf 4,

which allows users to choose the controller’s protocols and services.

 Big Switch: Its Big Cloud Fabric controller creates a virtual

private cloud based on SDN controller abstractions and open networking

hardware switches [17].

https://www.sciencedirect.com/topics/computer-science/multiple-controller
http://www.noxrepo.org/
https://www.sdxcentral.com/automation/definitions/programmability-network-automation-sdn-networks/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-it-infrastructure-definition/
https://www.sdxcentral.com/networking/sdn/definitions/opendaylight-controller/
https://www.sdxcentral.com/cloud/definitions/what-is-cloud/

21

2.3.2. The Open Flow Switch

The Open Flow Device is any network equipment supporting the Open Flow protocol,

such as a switch. Each device maintains a Flow Table that indicates the processing

applied to any packet of a certain flow [20].

An Open Flow Switch uses an Open Flow channel for an external controller and

perform the packet forwarding and packet lookup using one or more flow tables and

group tables [19].

When an Open Flow switch receive a user packet, it is going to be looked over in a flow

table in order to check that the packet matches. If it matches, the user packet is examined

and forwarded based on the predefined action. Every so often look in on further flow

tables as predefined by the actions. If the user packet mismatches the last flow table

entry, and no table-miss entry, the packet will be dropped. Attention that a table-miss

entry can be thought of as a default entry to let a packet know that if there is no match,

then it is to be sent to the controller. Thus, if the user packet match occurs only at the

table-miss entry, then the packet is forwarded to the controller for further action. The

controller may choose to insert a new flow table entry for this new flow or to drop this

user packet. The packet flow in an Open Flow switch is described in Fig. 2-2 [22].

Fig 2-3 packet flow in Open flow switch [22]

2.3.3. Open Flow Ports

 Open Flow switches are passing packets between each other by the use of a network

interfaces called Open Flow ports. A user packet can be forwarded from one Open Flow

switch to the other by only using an output Open Flow port on the first Open Flow

switch and an ingress Open Flow port on the second switch.

22

For Open Flow processing, An Open Flow switch makes a number of Open Flow ports

available. The set of network interfaces provided by the switch hardware, may not be

the same with the set of open flow ports. Since some network interfaces might be

disabled for Open Flow, The Open Flow switch may provide extra Open Flow ports

[19].

2.3.4. The Open Flow Protocol

The Open Flow protocol is an interface between the controller and the switch that sets

up the flow table. And the flow table is managed (add and remove) flow entries by the

controller using the Open Flow protocol.

The Flow Table is updated by the controller by adding and removing flow entries using

the Open Flow protocol. In order to command the Switch, to apply some actions

(Forward, drop or encapsulate) on a certain flow, The Flow Table contains a lot of Flow

Entries associated with actions to command the Switch [20].

Fig 2-4 Open Flow table [20]

As shown on the above figure 2-3, each Open Flow devices have a Flow table with flow

entries In the SDN Open Flow network. The Flow Entry contains three (3) fields which

listed below:

 The Header field: it is used to define the match condition to an exact flow.

 The Counter field: are used to count the rule occurrence for management purposes.

 The Action field: define the action to be applied to a specific flow.

When a packet arrives at the Open Flow switch, it will be matched by a Flow Entry in

the Flow Table, so the action will be executed if the header field is matched, and the

counter is updated. In case the user packet mismatch any flow entry, then the user

23

packet will be sent to the controller. Note that in the Flow Table a higher number means

a higher priority. In which the priority is used to match the user packet, whereas the

flow entry containing higher priority will be chosen [30].

2.3.5. The Controller-Switch Secure Channel

The communication between the Open Flow controller and the Open Flow devices is

secured by the Asymmetrical encryption, which is a Transport Layer security, therefore

unencrypted TCP connections are allowed. These connections may be in-band or out-

of-band. The Figure 2-4 below depicts these two variants of the secure channel. In the

out-of-band example, we see in the figure that the secure channel connection enters the

switch via port Z, which is not switched by the Open Flow data plane. To the secure

channel process in the switch, some traditional network stack will forward the Open

Flow messages using the secure channel. Where all Open Flow messages are parsed

and handled. Thus, the out-of-band secure channel is relevant only in the case of an

Open Flow-hybrid switch. In the in-band example, we see the Open Flow messages

from the controller arriving via port K, which is part of the Open Flow data plane. In

this case these packets will be handled by the Open Flow packet-matching logic shown

in the figure. The flow tables will have been constructed so that this Open Flow traffic

is forwarded to the LOCAL virtual port, which results in the messages being passed to

the secure channel process. Note that it is recommended tot to use the TLS based

encryption when the controller and all the switches it controls are located entirely within

a tightly controlled environ.ment such as a data centre, because of a performance

overhead is incurred by using this type of security [21].

24

Fig 2-5 Open Flow controller-switch secure channel [21]

2.3.6. Open Flow messages

Open Flow messages are sent and received between the controller and the data paths

(Open Flow instances or devices) it manages. These messages are byte streams, the

structure of which is documented in the Open Flow Protocol Specification documents

published by the Open Networking Foundation (ONF). Open Flow protocol categorize

message types in to three, each with multiple categories:

 Controller-to-switch

 Symmetric

 Asynchronous

2.3.6.1. Controller-to-switch messages

Controller-to-switch messages are first launched by the controller and the functionality

of this message is controlling and managing the state of the switch. This controller-to-

switch messages might not need a response from the switch and are classified in the

following categories.

25

 Features

While the transport layer security session is initiated, the controller sends a feature

request message to the switch. And then the switch have to reply with features reply

message which indicates the features and abilities that the switch can support.

 Configuration

Since the controller have an ability to set and query configuration parameters in switch,

the switch also can only responds to a query from the controller.

 Modify-State

The controller sent the Modify-State message in order to add, delete or modify the flow

table entries or to set the switch pot priorities, and also this messages are sent to manage

the state of the switch.

 Read-State

The read-state messages gather statistics from the follow table of the switches, ports

and from each flow entries.

 Send-Packet

The send-packet message is used to send packets out of predefined ports on the switch

and those messages are sent by the controller.

 Barrier

This barrier messages are used to verify whether to receive a successful completion

notification or message dependencies have been met and this message is also used by

the controller [23].

2.3.6.2. Symmetric messages

Symmetric messages are one of an open flow messages in which the messages are

launched by the controller or the switch and they are sent without and request. And

there are three subcategories of symmetric messages: -

 Hello Message

Hello messages are one of the symmetric messages in which the messages are

interchanged between the controller and the switch based on the connection setup.

26

 Echo Message

This types of massaged are used to specify the bandwidth, latency and or the heartbeat

of a controller-switch communication. And also this messages, can be sent from the

controller or the switch and there have to be an echo reply message.

 Vendor Message

This vendor message produces the standard way of an Open Flow switch to give

supplemental functionality within the Open Flow message types for future revision of

Open Flow [23].

2.3.6.3. Asynchronous messages

Asynchronous messages are one of an Open Flow message in which it is first launched

by the switch and used to modify the controller of network events and variations to the

switch state.

Switches send the asynchronous messages to the controller to indicate that the packet

is arrived, the state of the switch is changed, or packet is error. And four categories of

asynchronous messages are defined below: -

 Packet-in messages

Packet-in messages are one type of asynchronous message in which these types of

messages are sent to the controllers whether packets have a matching entry or not. When

the switch have enough space to buffer packets sent to the controller, the packet in

message includes A buffer ID and the packet header with a default size of 128 bytes are

used by the controller when it is ready to forward the packet for the switch, but if the

switches have insufficient buffer space, they have to send the entire packet to the

controller as a part of the message.

 Flow-Removal messages

The flow entry removal message shows that while a flow entry is added to the switch,

by a flow modify message, an idle timeout value shows the time entry should be

removed due to inactivity or large timeout value. In which this value shows that when

the entry should remove except with activity.

 Port-status messages

When the port configuration state changes (the port status changes, port disabled by the

user or a change in port status as predefined in 802.1D) the switch is expected to send

27

the port-status message to the controller. Open Flow switches might support spanning

tree protocol. When the Port is changed in the case of spanning tree are sent to the

controller using the port-update messages.

 Error messages

Error message indicate a message that the switch alerts the controllers in the case of

problems [23].

2.3.6.4. Packet Matching

While the packet arrives at the Open Flow switch either from an input port or some

often from the controllers, the packets are matched in the flow table to specify that there

is a matching flow entry. The below listed match fields associated with the incoming

packet might be used for matching against flow entries:

 Switch input port

 VLANID

 VLAN priority

 Ethernet source address

 Ethernet destination address

 Ethernet frame type

 IP source address

 IP destination address

 IP protocol

 IP Type of Service (ToS) bits

 TCP/UDP source port

 TCP/UDP destination port

These 12 match fields are collectively referred to as the basic 12-tuple of match fields

[21].

2.4. LOAD BALANCING TECHNIQUES IN SDN

Load balancing is a technique that optimize network performance and boost QoS by,

assigning load to network elements. Load balancing strategies and algorithms play a

big role in improving the efficiency by assigning or transferring the load to support both

the service providers and end users. Load balancing helps to forecast the traffic

bottleneck prior the occurrence.

28

 The Need for Load Balancing in SDN: as the concurrent requests are

increasing from clients, the servers in the network are getting overloaded,

therefore, to have a better service and meet the requirements of QoS, the load

must be balanced. If this concern is ignored, then it leads to failure of the links

and sometimes server crash. In comparison with the traditional networks, the

switches have only data planes with them while separating all the control planes

from the switches and moving them to a centralized unit called controller in

Software Defined Networks [11].

 Significance of Load Balancing: The three layers in software-defined

networks communicate with each other using interfaces. On the one hand, the

network devices present in the infrastructure layer forwards the requests to the

control layer. On the other hand, the applications with burdens of various

services in the application layer are to be fulfilled. So, to satisfy both the

requirements, the control layer plays a central intelligent role. With the

increasing demand of the customers over the cloud services, the number of

requests from the clients is increasing, so this puts an increased load on the

networking elements to handle them. Management of load raises a concern to

efficiently balance the load with the existing infrastructure and gain the

satisfaction of the customers by improving the QoS provided to them [11].

a) Conventional Load Balancing Techniques

The conventional load balancing techniques are the current techniques in use to balance

the load. These techniques use the traditional algorithms for load balancing, and

prominent of them include round-robin technique, equal-cost multipath routing

protocol, least connections, random techniques, etc. [11].

b). Artificial Intelligent Based Load Balancing Techniques

Artificial Intelligence-based techniques use a metaheuristic approach to solve real-

world problems. The sub-areas of artificial intelligence include deep learning, neural

network, natural language processing, knowledge representation, reasoning (logical

and probabilistic), and decision making with search, planning, and decision theory.

Artificial intelligence-based load balancing techniques provide better learning abilities

and foster decision making in SDN [11].

29

CHAPTER THREE

3. ANALYSIS OF EXISTING SDN BASED LOAD

BALANCERS

3.1. Load balancing Algorithms

3.1.1. Round Robin Load balancing algorithm

Round robin algorithm is one of the popular algorithms used in SDN based load

balancing techniques. This approach distributes the request to the paths in sequence,

starting from the first path to the last one in rotation continuously. It passes new requests

to the next server in line and distributes user requests evenly across an array of servers

being load balanced. The main advantages of the round. The robin algorithm is simple

to implement, cheap, very predictable, fair and works best when all servers have equal

capacity. The disadvantage of this algorithm is it has no priority means that it doesn’t

give any special priority to more important tasks. In the SDN open flow model, when

the controller is initialized, the first statistics of all servers’ information (IP address,

MAC address, ID, port) in the cluster are collected and stored in a Hash Map. When

the VIP module is calling the Open Flow enabled Round-Robin algorithm to assign the

incoming traffic, the algorithm will determine which server to use according to the last

selected server’s ID. This method ensures that all servers will be visited in a loop.

3.1.2.Weighted round robin Load balancing algorithm

Weighted round robin algorithm is one of the methods use d in server cluster load

balancing. It assigns user requests first by checking the weight of each server in the

cluster. The advantage of weighted round robin algorithms is for those datacentres

having different servers in speed and memory. In [12], it has been explained that

weighted round robin algorithms usually specify weights in proportion to actual

capacities. So, here assume that, the Server 1's capacity is 10 times more than Server

2's, then we can assign a weight of 10 to server 1 and weight of 1 to server 2.

30

3.1.3. Least Load balancing algorithm

The least load server load balancing algorithm is one of the load balancing methods

applied on SDN networks. This approach forwards the request to the path that has the

least number of current connections.

3.1.4.Random Load balancing algorithm

Random load balancing algorithm is commonly used in SDN networks. This approach

randomly allocates the traffic to the convenient servers. In this algorithm, a process can

be handled as the node is selected based on a random selection, without having any

information about the current, or the previous load over the node. Random load

balancing algorithm uses a random number generator, and it is preferred when all

processes are equally loaded.

3.2. Performance analysis based on different Algorithms

The researcher in [13] evaluates, the performance of round robin, weighted round robin

and least load server cluster load balancing algorithms using software defined

networking open Flow model by using Ethiopian telecommunications corporation

enterprise shop CRMS users’ data as input for performance analysis of different load

balancing algorithms in terms of network performance parameters such as response

time/sec, transaction rate trans/sec throughput (MB/sec) in SDN network. Simulation

has been used as a methodology to evaluate server load balancing algorithms using the

Open Flow model by creating a virtual environment with an oracle virtual box. In

addition, a mininet simulation tool has been used to create the network topology and

POX controller used in the control layer of the open Flow model to do the performance

evaluation of the load balancing algorithms. The simulation result shows that the round

robin algorithm is better than the weighted round robin and least load server load

balancing algorithms in terms of response time (sec), transaction rate (trans/sec),

throughput (MB/sec). The following Topology is used for analysis of the performance.

31

Fig 3-1 SDN based server cluster load balancing topology [13]

 The results have been presented in tabular and graphical form. The response

time in (sec) of round robin, weighted round robin and least load server cluster

load balancing algorithms by increasing the number of concurrent users starting

from 10 concurrent users to 70 concurrent users with gradual increase of 10

concurrent users in between has been presented in figure 3-2 below.

Fig 3-2 Response time graph [13]

As we see in the response time (sec) graph in Figure 3.2, the response time (sec) of

round robin, weighted round robin and least load server cluster load balancing

32

algorithms increases as the number of concurrent users increases, but the response time

(sec) of round robin server cluster load balancing algorithm is less than when compared

to weighted round robin and least load server cluster load balancing algorithm. This is

because the round robin server cluster algorithm doesn’t check the current performance

of the server cluster. It simply assigns requests in a predefined pattern in cyclic fashion.

 The transaction rate in (trans/sec) of round robin, weighted round robin and

least load server cluster load balancing algorithms by increasing the number of

concurrent users starting from 10 concurrent users to 70 concurrent users with

gradual increase of 10 concurrent users in between has been presented on the

figure 3-3 below.

Fig 3-3 Transaction rate graph [13]

When we see the transaction rate (trans/sec) graph in figure 3.3, the round robin server

cluster load balancing algorithm has a better transaction rate (trans/sec) as the number

of concurrent users increases when compared to weighted round robin and least load

server cluster load balancing algorithms. The reason for this is that the response

time(sec) of round robin server cluster load balancing algorithm was better than

weighted round robin and least load server cluster load balancing algorithms as shown

in figure 3.2, and if round robin server cluster load balancing has less response time(sec)

,it can handle more transaction per second.

 The throughput rate in (MB/sec)of round robin, weighted round robin and least

load server cluster load balancing algorithms by increasing the number of

concurrent users starting from 10 concurrent users to 70 concurrent users with

33

gradual increase of 10 concurrent users in between has been described on the

below 3-4 graph.

Fig 3-4 Throughput graph [13]

As we see in the throughput (MB/sec) graph in Figure 3.4, it has been observed that the

throughput (MB/sec) for round robin server cluster load balancing algorithm is better

than that of weighted round robin and least load server cluster load balancing

algorithms. The justification for having a better throughput (MB/sec) in round robin

server cluster load balancing algorithm is that since it has a better response time (sec)

and if it has a better response time (sec), it will have better transaction rate (trans/sec)

and also if it has a better transaction rate (trans/sec), it will achieve better throughput

(MB/sec).

3.3. Performance analysis based on different Topology

Researcher [36] did a simulation to prove that the SDN with an Open Flow protocol on

load balancers performs more efficiently. In this research three design topologies are

examined for the analysis of the efficiency of the load balancers.

 The design topologies are then compared with design topologies without Open Flow.

The evaluation of the topologies is based on response time and latency.

 The first design topology is simple design in which there are equal number of

clients and servers, here there are two clients and two servers in the server pool

connected to SDN switch and the clients connected to a normal switch. These

34

two clients have to convey with the servers in the server pool. Whereas the

servers use the round robin algorithm as a load balancing.

Fig 3-5 Design topology one [36]

 The second design topology is a more complex design where there are five

clients, but

There is not an equal number of servers like the first design. In this design, there are

five clients but only four servers in the server pool to compensate those five clients.

The SDN switch connects the controller and the servers.

Fig 3-6 Design topology two [36]

35

The third design topology is a very complex design in which there are two servers in

the pool and nine clients.

Fig 3-7 Topology three [36]

To evaluate the performance of the design topologies are compared with and without

using Open Flow. In Table 3.1, time in seconds is noted when using Open Flow protocol

for output times. In each case, the number of requests are increased for different design

topologies and output time is noted. In Table 3.2, similar design topologies are

considered without using Open Flow and output times for requests are noted.

36

Table 3-1 Output time for requests using Open Flow [36]

Number of

requests

Topology 1

(Time in seconds)

Topology 2

(Time in seconds)

Topology

 (Time in seconds)

10 0.21 0.24 0.26

20 0.25 0.28 0.28

30 0.28 0.3 0.32

40 0.33 0.34 0.37

50 0.35 0.37 0.398

60 0.36 0.38 0.41

70 0.37 0.384 0.418

80 0.378 0.392 0.424

Table 3-2 Output time for requests without Open Flow [36]

Number of

requests

Topology 1

(Time in seconds)

Topology 2

(Time in seconds)

Topology

 (Time in seconds)

10 0.37 0.397 0.44

20 0.395 0.41 0.49

30 0.42 0.44 0.55

40 0.45 0.47 0.59

50 0.48 0.0.51 0.65

60 0.51 0.558 0.71

70 0.54 0.59 0.78

80 0.59 0.63 0.89

As we can see from the result, the research in [36] proves that the SDN with an Open

Flow protocol on load balancers performs more efficiently than topologies without

using Open Flow protocol. And also, the researcher in [36] concluded that compared to

topology two and topology 3 topology one has a better response time.

37

CHAPTER FOUR

4. PROPOSED OPEN FLOW BASED MULTI-

CONTROLLER TOPOLOGY

4.1. Proposed Network topology

In order to use multiple controllers on a single Open virtual switch, Open Flow model,

the most commonly used southbound interface for SDN is used. In this work, The

Proposed topology for having a better performance of SDN based load balancer is Open

Flow based Multi-controller Topology. which is simulated using mininet in the

infrastructure layer with the open flow switch, software defined multiple POX

controllers connected to the open flow switch using open flow protocol in the south

bound interface of the SDN open flow model on port 6633 and 6630. Moreover,

concurrent HTTP requests are sent by the client through the internet and the servers are

connected to the open flow switch.

The proposed design produces a better performance compared to topologies proposed

by researcher [13] and researcher [36].

Fig 4-1 SDN based multi-Controller load balancing topology

38

4.1.1. The workflow for the proposed topology

1. There are three clients and six servers, in which clients send a concurrent HTTP

request to HTTP servers.

2. The request is first sent to the Open V switch and the switch is connected to a

multiple POX controller.

3. Controllers are connected to the Open V switch through port 6633 and 6630 by

the use of Open Flow Model.

4. Once a HTTP request is sent by a client the switch receives the request and is

directed to the POX controllers by their respective ports.

5. Random load balancing algorithm is running on both controllers.

6. Once both The POX controller and load balancer gets ready.

7. Ten (10) to seventy (70) concurrent requests are respectively generated by the

Siege load testing tool.

8. Concurrent requests are distributed to both controllers for sharing a load.

9. Then HTTP responses are sent back to the clients.

10. The result will be evaluated in terms of three network parameters (Response

time (sec), Transaction rate (trans/sec), Throughput (KB/sec))

4.2. Proposed Load Balancing Algorithm

The proposed Load Balancing algorithm in this paper is evaluated and compared with

round robin, weighted round-robin and least connections which are one of the most

cited algorithms in this field. The results are compared in terms of the three network

performance parameters Response time, transaction rate and throughput under various

amounts of loads for each algorithm. This paper utilized an Analysis of load balancing

algorithms based on different topologies by increasing the number of servers and

propose a Random load balancing algorithm in which it randomly distributes the

workload on available resources and provide less response time, high transaction rate

and throughput compared to other load balancing algorithms in case of tested topologies

in this work.

39

4.2.1. The workflow for the proposed Random Load Balancing

Algorithm

Researcher in [37] shows, the Analysis of average load on a server when a random

picking of a server is used.

 Let there be k requests (or jobs) J1, J2, … Jk

 Let there be n servers be S1, S2 … Sk.

 Let time taken by i’th job be Ti

 Let Rij be loaded on server Si from Job Jj.

 Rij is Tj if j’th job (or Jj) is assigned to Si, otherwise 0. Therefore, value of Rij

is Tj with probability 1/n and value is 0 with probability (1-1/n)

 Let Ri be load on i’th server

 Average Load on i'th server ‘Ex (Ri)'

 Applying Linearity of Expectation in [38],

 =

∑𝐸𝑥

𝑘

𝑗=1

[𝑅𝑖𝑗]

 =

∑𝑇𝑖/𝑛

𝐾

𝐽=1

 = (Total Load)/n

4.3. Performance Evaluation Metrics for the Proposed Topology

In this work, the following parameters are going to be used to measure the performance

of the Proposed Multi-Controller Topology.

 Response time

https://www.geeksforgeeks.org/linearity-of-expectation/

40

Response time is the time that algorithms takes to respond to a given client request.

This includes the sum of total waiting time, transmission time, and service time that the

system requires. Therefore, minimizing response time will be the goal to optimize

performance and efficiency of Load balancing Algorithms.

 Throughput

Throughput is the metrics fir measuring the successfully accomplished work, and in the

case of the load balancer, throughput is the total number of successfully accomplished

per second.

It’s an insightful metric to measure since higher throughput indicates higher efficiency

of our load balancers, signalling healthy load balancing.

 Transaction rate

Transaction rate is a measurement of transactions performed per second.in the case of

load balancing algorithms, it depends on the response time of an algorithm, if the

response time is less, and the transaction performed per second will be high. Therefore,

maximizing the number of transactions performed per second will be the goal to

optimize the performance of load balancing algorithms.

41

CHAPTER FIVE

5. PERFORMANCE EVALUATION

In this Chapter, SDN based load balancing algorithms performance is evaluated using

the Mininet SDN network simulation tool which is very widely employed in SDN

research and POX controller. Four (4) load balancing algorithms are compared with

each other, Random, Round-robin, Weighted Round-robin and least load balancing

algorithms, in terms of performance evaluation metrics, response time/sec, transaction

rate trans/sec and throughput (MB/sec)by increasing the number of concurrent client

requests. The other issue discussed in this section is, evaluating and comparing the

performance of load balancing algorithms by increasing the number of servers and

controllers based on three different topologies and coming up with a topology having a

better load balancing performance among tested topologies.

5.1. Simulation Setup

Mininet 2.30 is used to emulate the SDN network on a Desktop with Intel(R) Core (TM)

i3-3220 CPU@3.30GHZ,10.0GB RAM which has 64-bit operating system and to run

Ubuntu 16.04 Linux operating system Oracle virtual box 6.0.24 is used as a hypervisor.

SDN POX controller is used as a remote controller in which the proposed algorithm is

deployed. The proposed multi-controller is connected to the Open Flow switch on port

6633 and 6630 to generate ten to seventy concurrent HTTP requests and to test load the

SIEGE tool is used.

In this work, there are three topologies tested with different scenarios.

 Topology 1: in topology one three (3) clients and three(3) servers are connected

to a single Open Switch and a single POX controller running different load

balancing algorithms.

42

Fig 5-1 Topology 1

 Topology 2: In topology 2, three (3) clients and six (6) servers connected to a

single Open Flow switch and a single POX controller running different load

balancing algorithms. The number of servers is increased in order to test

whether the response time is minimized compared to topology one or not.

43

Fig 5-2 Topology 2

 Topology 3 (The proposed Topology): the last topology is topology 3. In this

topology three (3) clients and six (6) servers are connected to a single Open

Flow switch which is connected to a multiple controller by port 6633 and 6630

using an open flow model and each controller is running a Random load

balancing algorithm. Here in this topology, multiple controllers are used to

share a load from each other. A request sent from clients is distributed to both

controllers running their own load balancing algorithm, which improves the

performance of load balancers.

44

Fig 5-3 Topology 3

5.2. Results and Observations

The result for the performance analysis of the four load balancing algorithms in terms

of different topologies and the result for the proposed topology and the comparisons

are presented in the form of both tabular and graphical for simple understanding.

5.3. Results and Observations for Topology 1

5.3.1. Response time (sec) for topology 1

The response time (sec) of random, round robin, weighted round robin and least load

balancing algorithms for topology one is presented in table 5-1 below. By increasing

concurrent HTTP requests of clients from ten (10) to seventy (70), respectively.

45

Table 5-1 Topology 1 Response Time

Concurrent

Users

 Load Balancing Algorithms

Response time(sec)

Random Round Robin Weighted Round Robin Least Load

10 0.11 0.11 0.18 0.15

20 0.20 0.22 0.32 0.28

30 0.30 0.30 0.39 0.37

40 0.40 0.39 0.45 0.39

50 0.46 0.42 0.55 0.45

60 0.55 0.45 0.77 0.50

70 0.58 0.53 0.89 0.45

Fig 5-4 Response time graph

 The response time (sec) graph in figure 5.4 shows that, the response time (sec)

of random round robin, weighted round robin and least load balancing

algorithms increases as the number of concurrent users increases, but the

response time (sec) of random and round robin load balancing algorithm is less

46

and close when compared to weighted round robin and least load balancing

algorithm. This is because the random and round robin load balancing algorithm

does not check for any requirement. The random simply assigns a request for a

server and the round robin simply assigns requests in a predefined pattern in

cyclic fashion.

 However, the response time for both weighted and least load balancing

algorithms is increasing linearly as the concurrent request is increasing because

they booths check for a requirement were as, weighted load balancing algorithm

check for weight of each server before assigning the request and the least load

balancing algorithm checks for the minimum server load before assigning a

request for a server.

5.3.2. Transaction rate (trans/sec)

The transaction rate in (trans/sec) for a topology 1 of random. round robin, weighted

round robin and least load balancing algorithms have been presented by increasing the

number of concurrent users starting from ten(10) to seventy (70), respectively.

Table 5-2 Topology 1 transaction rate

Concurrent

Users

Load Balancing Algorithms

Transaction Rate(trans/sec)

Random Round Robin Weighted Round Robin Least Load

10 89.03 93.81 55.06 68.03

20 96.94 90.16 59.83 69.66

30 97.97 98.03 59.03 68.94

40 97.51 98.24 58.58 70.65

50 99.95 97.19 58.99 71.75

60 96.70 100.88 59.35 68.38

70 99.32 99.10 58.34 68.01

47

Fig 5-5 Topology 1 Transaction rate

 The transaction/sec for the topology one shows that random and round robin

load balancing algorithms have a better transaction rate (trans/sec) as the

number of concurrent users increases when compared to weighted round robin

and least load server cluster load balancing algorithms. This is because they

have less response time (sec) and handle more transaction/sec compared to that

of weighted round robin and least load balancing algorithms as shown in figure

5.4.

5.3.3. Throughput (MB/sec) for topology 1

 The throughput (MB/sec)for topology_1 of random, round robin, weighted

round robin and least load balancing algorithms have been presented in table 5-

3 below by increasing the number of concurrent users from ten(10) to

seventy(70), respectively.

48

Table 5-3 Topology 1 throughput

Concurrent

Users

 Load Balancing Algorithms

Throughput (MB/sec)

Random Round Robin Weighted Round Robin Least Load

10 0.13 0.13 0.07 0.09

20 0.13 0.12 0.08 0.09

30 0.13 0.13 0.08 0.09

40 0.13 0.13 0.08 0.09

50 0.13 0.12 0.08 0.09

60 0.12 0.13 0.08 0.09

70 0.13 0.13 0.07 0.09

Fig 5-6 Topology 1 Throughput

 The result observed in topology_1 the throughput (MB/sec) of random and

round robin load balancing algorithm has shown a highest result compared to

that of Weighted and least load balancing algorithm. And, the reason for this is

that both random and round robin load balancing algorithms have a better

49

response time relatively and this will achieve a higher throughput than weighted

and least load balancing algorithms as shown on figure 5.6.

5.4. Results and Observations for Topology 2

5.4.1. Response time for topology 2

The response time/sec of random, round robin, weighted round robin and least load

balancing algorithms for topology two (2) is presented in table 5-4 below

respectively. By increasing concurrent HTTP requests of clients from ten (10) to

seventy (70).

Table 5-4 Topology 2 Response time

Concurrent

Users

Load Balancing Algorithms

Response time (sec)

Random Round Robin Weighted Round Robin Least Load

10 0.13 0.12 0.29 0.15

20 0.28 0.25 0.58 0.35

30 0.41 0.41 0.68 0.58

40 0.59 0.51 0.98 0.38

50 0.87 0.60 0.84 0.41

60 0.81 0.85 1.49 0.52

70 0.82 0.87 1.53 0.54

50

Fig 5-7 Response Time for Topology 2

 The response time (sec) graph in 5.7 shows that the response time (sec) of

random and round robin load balancing algorithms have less and close response

time compared to weighted round robin and least load balancing algorithms.

 However, the response time for Topology _1 is less in the case of random and

round robin load balancing algorithms compared to the response time/sec for

topology 2. But the response time/sec for Topology_2 is less when compared to

topology_1 in the case of weighted round robin algorithm and least load

balancing algorithm. The reason for this is weighted round robin checks for the

weight that each server can handle before sending the request and the least load

balancing algorithm checks the load for each server before sending the request.

5.4.2. Transaction rate (trans/sec) for Topology 2

The transaction rate in (trans/sec) of random, round robin, weighted round robin and

least load balancing algorithms for Topology 2 have been presented I table 5-5 below

by increasing the number of concurrent HTTP requests from ten(10) to seventy(70),

respectively.

51

Table 5-5 Topology 2 transaction

Concurrent

Users

 Load Balancing Algorithms

Transaction Rate(trans/sec)

Random Round Robin Weighted Round Robin Least Load

10 76.60 80.18 34.81 65.13

20 72.18 78.32 34.12 54.37

30 72.15 73.18 31.64 37.56

40 65.98 77.87 34.75 62.06

50 55.87 82.65 33.04 55.33

60 71.05 68.39 32.32 47.71

70 78.20 73.12 32.95 32.49

Fig 5-8 Topology 2 Transaction rate

52

 The transaction(sec) graph in figure 5.8 shows that the transaction rate of

random and round robin load balancing algorithms are higher compared to

weighted round robin and least load balancing algorithms

 When comparing the transaction/sec of topology_1 with topology_2 the

transaction /sec for topology_1 is better.

 Even though the response time for weighted round robin and least load

balancing algorithm were less in topology_2, the transaction /sec they handle is

less compared to topology_1.

5.4.3. Throughput for topology 2

 The throughput in (MB/sec)of round robin, weighted round robin and least load server

cluster load balancing algorithms by increasing the number of concurrent users starting

from 10 concurrent user to 70 concurrent users with gradual increase of 10 concurrent

users in between has described in table 5-6 below:

Table 5-6 Topology 2 throughput (MB/sec)

Concurrent

Users

 Load Balancing Algorithms

Throughput(MB/sec)

Random Round Robin Weighted Round Robin Least Load

10 0.12 0.11 0.09 0.10

20 0.12 0.11 0.07 0.08

30 0.11 0.11 0.07 0.06

40 0.10 0.12 0.06 0.09

50 0.13 0.12 0.06 0.08

60 0.11 0.10 0.05 0.07

70 0.12 0.11 0.05 0.05

53

Fig 5-9 Throughput for topology 2

 According to the result observed the throughput (MB/sec) of random and round

robin load balancing algorithm has shown a highest result compared to that of

Weighted and least load balancing algorithm. And the reason for this is that both

random and round robin load balancing algorithms have a better response time

relatively and this will achieve a higher throughput than weighted and least load

balancing algorithms as shown on figure 5.9.

 Comparing the throughput of load balancing algorithms based on topology, the

throughput for topology_1 is higher than the throughput for topology_2. This is

achieved because the response time for topology_1 is less compared to

topology_2.

5.5. Results and Observations for the proposed multi-

controller Topology (Topology 3)

According to the performance analysis of random, round robin, weighted round robin

and least load balancing algorithms from the above figure 5-1, figure 5-2 and figure 5-

3 topologies, Random load balancing algorithm is selected as having a better Response

time (sec) transaction rate (trans/sec) and throughput (MB/sec) compared to round robin

54

weighted round robin and least load balancing algorithms. Therefore, a random load

balancing algorithm is used for further analysis in the proposed Open Flow based multi-

controller topology.

 The proposed topology is a multi-controller topology which can only be

achieved using the Open Flow model.

 The proposed topology is a new topology in which a multiple controller is

connected on a single open switch through predefined port 6633 and 6630.

 In the proposed topology the concurrent requests sent by the client are shared

on the two controllers since both controllers are running a random load

balancing algorithm, the response time, transaction rate and throughput for a

load balancer will be improved.

let’s assume that a client is sending 30 concurrent HTTP requests, So here the

request received will not go to only one controller the request will be shared for

both controllers and the response received will be fast, high transaction rate and

high throughput.

5.5.1. Response time for proposed topology (topology 3)

The response time/sec of the random load balancing algorithm for the proposed multi-

controller topology is compared with topology_2 (a topology with a single controller)

and presented in table 5-7 below, by increasing concurrent HTTP requests of clients

from ten (10) to seventy (70) respectively.

Table 5-7 Proposed Topology Response Time/sec

Concurrent

Users

Random Load balancing Algorithm

 Response time(sec)

Single Controller Multi-Controller

10 0.13 0.11

20 0.28 0.20

30 0.41 0.30

40 0.59 0.40

50 0.87 0.46

60 0.81 0.55

55

70 0.82 0.58

Fig 5-10 Topology 3 Response time

As the result is observed, the response time for the proposed multi-controller topology

is less when compared to a topology with a single controller.

 This can be achieved because of having multiple controllers and sharing the

load to both controllers.

5.5.2. Transaction rate for the proposed topology (topology 3)

The transaction /sec of the random load balancing algorithm for the proposed multi-

controller topology is compared with topology_2 (a topology with a single controller)

and presented in table 5-8 below, by increasing concurrent HTTP requests of

clients from ten (10) to seventy (70), respectively.

56

Table 5-8 proposed topology transaction rate

Concurrent

Users

Random Load balancing Algorithm

Transaction Rate(trans/sec)

Single Controller Multi-Controller

10 76.60 89.03

20 72.18 96.94

30 72.15 97.97

40 65.98 97.51

50 55.87 99.95

60 71.05 96.70

70 78.20 99.32

Fig 5-11 Transaction rate for topology 3

 As it is observed from the graph, the transaction rate for the proposed multi-

controller topology is higher when compared to a topology with a single

controller.

 The transaction rate is linearly increasing as the concurrent request increases,

this is because the response time for the multi-controller topology is increasing

linearly as the number of concurrent requests increase.

57

5.5.3. Throughput for the proposed topology (topology 3)

 The throughput (MB/sec) of the random load balancing algorithm for the proposed

multi-controller topology is compared with topology_2 (a topology with a single

controller) and presented in table 5-9 below, by increasing concurrent HTTP requests

of clients from ten (10) to seventy

(70), Respectively.

Table 5-9 proposed topology throughput

Fig 5-12 Topology 3 Throughput

 As the result is observed, the throughput for the proposed multi-controller

topology is higher when compared to a topology with a single controller.

Concurrent

Users

Random Load balancing Algorithm

Throughput (KB/sec)

Single Controller Multi-Controller

10 120 140

20 120 130

30 110 130

40 100 130

50 100 130

60 130 130

70 110 120

58

 This can be achieved because of having multiple controllers and loads are

shared to both controllers, the number of requests successfully completed is

higher.

5.6. Comparative Analysis of Results

The comparative analysis of four topologies in terms of a response time (sec) by using

Open Flow model is presented in table 5-10 below in a tabular form. As we can see

from the table, the response time, transaction rate and throughput value for a proposed

Open Flow based Multi-Controller topology is better than topologies presented by

researcher [36] and researcher [13]. In this section, response time metrics is used to

compare the four topologies because of response time is their common performance

metrics for both researchers, and the transaction rate and throughput is compared with

topology one of researcher [13].

59

Table 5-10 Comparative analysis for Response time

Number

of

requests

Researcher in

[36]Topology

Two

Researcher in

[36]Topology

Three

Researcher

in [13]

Topology

Single

Controller

Topology

Proposed

 Multi-Controller

Topology

10 0.397 0.44 0.14 0.13 0.11

20 0.41 0.49 0.32 0.28 0.20

30 0.44 0.55 0.45 0.41 0.30

40 0.47 0.59 0.61 0.59 0.40

50 0.0.51 0.65 0.77 0.87 0.46

60 0.558 0.71 0.92 0.81 0.55

70 0.59 0.78 1.1 0.82 0.58

Table 5-1 1 Comparative analysis for Transaction rate

Number of

requests

Researcher in [13]

Topology

Single Controller

Topology

Proposed

Multi-Controller

Topology

10 85.63 76.60 89.03

20 82.37 72.18 96.94

30 91.42 72.15 97.97

40 69.10 65.98 97.51

50 94.18 55.87 99.95

60 75.71 71.05 96.70

70 67.72 78.20 99.32

Table 5-1 2 Comparative analysis for Throughput KB/sec

Number of

requests

Researcher in [13]

Topology

Single Controller

Topology

Proposed

Multi-Controller

Topology

10 130 120 140

20 130 120 130

30 110 110 130

40 100 100 130

50 110 100 130

60 100 130 130

70 100 110 120

60

CHAPTER SIX

6. CONCLUSIONS, CONTRIBUTIONS AND FUTURE

WORKS

6.1. Conclusions

In this work, performance analysis is done on four SDN based load balancing

algorithms namely random, round robin, weighted round robin and least load balancing

algorithm in terms of three network performance metrics response time/sec, transaction

rate/sec and throughput (MB/sec)based on topology 1 and topology 2 by increasing the

number of concurrent users from ten(10) to seventy(70) which is simulated using SDN

Open Flow model in open source POX controller and Open Flow switches in mininet

for topology creation. According to the result, a random load balancing algorithm is

selected as a better load balancing algorithm in terms of network performance metrics

response time/sec, transaction rate/sec and throughput (MB/sec).

In addition, a new Open Flow model based multi-controller topology is proposed and

compared with topology 2 which has a single controller using random load balancing

algorithm for improving the performance of SDN based load balancing algorithms. and

the result obtained shows that a proposed multi-controller topology has improved the

performance of SDN based load balancing in terms of network performance metrics

response time/sec, transaction rate /sec and throughput (KB/sec).

6.2. Contributions

 Propose a new Open Flow based multi-controller topology for performance

improvement of SDN based load balancing algorithm.

 Performance evaluation of random, Round robin, weighted round robin and

least load balancing algorithm based on different topology is done. And the

proposed topology improved the response time (sec) by reducing an average of

30.12%, increasing the transaction rate (trans/sec) by an average of 39.44% and

also increasing the throughput (KB/sec) by an average of 10.56% when

compared with a single controller topology using random load balancing

algorithms in SDN POX controller.

61

 Since SDN deployment is at initial stage in Ethiopia, this study provides an

insight that Open Flow based multi-controller topology can be implemented

with different load balancing algorithms to achieve a better operational

efficiency.

6.3. Future Works

To have a better performance of load balancing algorithms in the SDN network the

following future work might be important.

 In this study, the proposed Open Flow based multi-controller topology is done

in a simulation environment using POX Controller. As a future work, the

proposed topology can be tested on a real SDN network.

 And since there are different controllers supporting different Open Flow

protocol versions the proposed Open Flow multi-controller topology can be

tested on different Open Flow protocol versions.

 Since there are different network performance evaluation metrics like Latency,

Error rate, Reliability and Fault tolerance, SDN load balancing algorithms can

be evaluated based on those metrics as a future work.

62

REFERENCES

[1] A. Hakiri, A. Gokhale, P. Berthou, D. C Schmidt, T. Gayraud, et al., “Software-

defined networking:Challenges and research opportunities for future Internet,”

Computer Networks, vol. 75, pp. 453–471, 2014.

[2] M. Erel, Z. Arslan, Y. Ozcevik, B. Canberk, et al., “Software-defined wireless

network (SDWN) a new paradigm for next generation network management. In

Modeling and Simulation of Computer Networks and Systems,” Elsevier: Amsterdam,

the Netherlands,” vol. 17, pp. 751–766, 2015.

[3] A. Abdelaziz, A. Fong, A. Gani, G. Usman, K. Suleman, A. Adnan

khunzada, Hamid Talebian, Kim-Kwang Raymond Choo, et al., “Distributed controller

clustering in software defined networks,” 6 April 2017.

[4] A. Neghabi, N. Navimipour, M. Hosseinzadeh, A. Rezaee, et al., “Load balancing

mechanisms in the software defined networks: A systematic and comprehensive review

of the literature,” IEEE Access [Online] Available: 2018, 6, 14159–14178.

[5] P. Martinez-Julia, A. Skarmeta. “Empowering the internet of things with software

defined networking,” In White Paper, IoT6-FP7 European Research Project; 2014.

[Online]. Available: https://www.semanticscholar.org/search?q=Empowering-the-

Internet-of-Things-with Software &sort=relevance (accessed on 3 May 2020).

[6] D. Kreutz, F. Ramos, P. Verissimo, C. Rothenberg, S. Azodolmolky, S. Uhlig, et

al., “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE

103, 1 (2015), 14–76.

[7] I. Akyildiz, A. Lee, P. Wang, M. Luo, W Chou, et al., “A roadmap for traffic

engineering in SDN-Open Flow networks,” Computer Networks, Vol. 71 pp. 1–30,

2014.

[8] S. Thabo, M. Thabiso, A. Stephen , K. Kefalotse, D. Setso, B. Gabanthone, S. Seth

et al., (2020), “Intelligent Load Balancing Techniques in Software Defined

Networks,”: survey, Electronics , 9 (7), 1091; [ONLINE] Available:

https://doi.org/10.3390/electronics9071091

[9] S. Cisco, “SDN Architecture,” [Online]. Available:

https://www.cisco.com/c/en/us/solutions/software-defined networking/overview.html

https://www.semanticscholar.org/author/A.-Abdelaziz/143898340
https://www.semanticscholar.org/author/Ang-Tan-Fong/2817268
https://www.semanticscholar.org/author/A.-Gani/143930319
https://www.semanticscholar.org/author/Usman-Garba/2091052930
https://www.semanticscholar.org/author/Suleman-Khan/2018522
https://www.semanticscholar.org/author/Adnan-Akhunzada/2902894
https://www.semanticscholar.org/author/Adnan-Akhunzada/2902894
https://www.semanticscholar.org/author/Hamid-Talebian/2144390
https://www.semanticscholar.org/author/Kim-Kwang-Raymond-Choo/2840539
https://doi.org/10.3390/electronics9071091
https://www.cisco.com/c/en/us/solutions/software-defined%20networking/overview.html

63

[10] W. Raniyah, A. Rami A. Suheib, 2021 “SDN-Open Flow Topology Discovery: An

Overview of Performance Issues,” Applied Science., 11, 6999:

https://doi.org/10.3390/app11156999

[11] R. Mohammad, M. Shahrulniza, A. Muhammad, M. Mazliham, “A Systematic

Review of Load Balancing Techniques in Software-Defined Networking,” [Online]

Available: 10.1109/ACCESS.2020.2995849

[12] S. Sabiya, "Weighted round-robin load balancing using software defined

networking," International Journal of Advanced Research in Computer Science and

Software Engineering, Vol. 6, pp. 621-625, 201.

[13] Wubishet Abebe, “Performance Evaluation of Server Cluster Load balancing

Algorithms Using SDN Open Flow Model,” Addis Ababa, Ethiopia, 2016.

[14] M. Priyadarsini, J. Mukherjee, P. Bera, S. Kumar, A. Jakaria, M. Rahman, et al.,

“An adaptive load balancing scheme for software-defined network controllers,”

Computer Network, vol. 7, pp. 23, 2019

[15] Alexis de Talhouët, “The evolution of software defined networking,” June 17,

2021.

[16] K. Karamjeet, S. Japinder and S. Navtej, “Network Programmability Using POX

Controller,” Department of Computer Science and Engineering, 2015.

[17] Haeeder Munther Noman and Mahdi Nsaif Jasim, “POX Controller and Open Flow

Performance Evaluation in Software Defined Networks (SDN) Using Mininet

Emulator,” 2020 IOP Conf. Ser.: Mater. Sci. Eng. 881 012102.

[18] A. Tecmint, “Load Testing Web Servers with Siege Benchmarking Tool,”

[Online]. Available: https://www.tecmint.com/load-testing-web-servers-with-siege-

benchmarking-tool/

[19] F. Carlos, L. Jose, Z. Muñoz “Software Defined Networking (SDN) with Open

Flow1.3, Open vSwitch and Ryu,” UPC Telematics Department, 20 July 2015.

[20] M. Ali, “Inside-Open Flow,” [Online]. Available:

https://confignetworks.com/inside-Open Flow/

[21] G. Paul, B. Chuck, “Software Defined Networks a Comprehensive Approach 1st

edition,” Harlow: Prentice Hall, 2014.

https://doi.org/10.3390/app11156999
https://www.tecmint.com/load-testing-web-servers-with-siege-benchmarking-tool/
https://www.tecmint.com/load-testing-web-servers-with-siege-benchmarking-tool/
https://confignetworks.com/inside-openflow/

64

[22] M. Deep, R. Karthik, “Network Routing (Second Edition),”Interconnection

Networks, 2018.

[23] Oswald Coker, Siamak Azodolmolky, “Software Defined Networking with Open

Flow,” October 2017.

[24] Khan, M. Ali, N. Sher, Y. Asim, W. Naeem, and M. Kamran, “Software-Defined

Networks (SDNs) and Internet of Things (IoTs): A Qualitative Prediction for 2020,”

International Journal of Advanced Computer Science Application, Vol. 7, No. 11, pp.

385–404, 2016

[25] N. Hamid, S. Rasool, M. Sayed, I. Faghih, “Load balancing in software defined

networking using controller placement,” Department of Computer Engineering

[Online] Available at: r.sadeghi@iauda.ac.ir) , 2020.

[26] B. Sumit, S. Japinder, B. Shaheed, “Introduction to Load balancing and Strategies

used in software defined networking,” Ferozepur, Punjab: 2017.

[27] C. Connor, “What is Open Flow,” [Online]. Available:

https://www.sdxcentral.com/networking/sdn/definitions/what-is-Open Flow/:

November 2020.

[28] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, "Ofswitch13: Enhancing ns-3

with Open Flow 1.3 support," in Proceedings of the Workshop on vol 3, pp. 33-40,

2016.

[29] IBM, “What Is Software defined networking,” [Online]. Available:

https://www.ibm.com/cloud/blog/software-defined-networking : 15 April 2021

[30] G. Paul, B. Chuck and C. Timothy, “Software Defined Networks,” 2nd edition,

2017.

[31] A. Jehad li, L. Seungwoon, R. Byeong-hee, “Performance Analysis of POX and

Ryu with Different SDN Topologies,” In ICISS '18: Proceedings of the 2018

International Conference on Information Science and System, April 2018, pp.244-249

[32] S. Nazari, P. Gerla, M. Hoffmann, C. Kim, A. Capone, et al., “Software defined

naval network for satellite communications (SDN-sat),” MILCOM: 2016.

[33] S. Fizi, and S. Askar, "A novel load balancing algorithm for software defined

network based datacenters,” Proceedings. IEEE International. Conference Broadband

https://www.sciencedirect.com/book/9780128007372/network-routing
https://www.sdxcentral.com/networking/sdn/definitions/what-is-Open%20Flow/
https://www.ibm.com/cloud/blog/software-defined-networking
https://www.ibm.com/cloud/blog/software-defined-networking
https://dl.acm.org/doi/proceedings/10.1145/3209914
https://dl.acm.org/doi/proceedings/10.1145/3209914

65

Community. Next Generat. Network Multimedia Application. (CoBCom), vol. 7, pp. 1-

6, Sep. 2016.

[34] M. Omran, Z. Al Saheli, A. Zainal, N. Zakaria, Z. Abal, et al., “ Software Defined

Network based Load Balancing for Network Performance Evaluation,” vol.13, No 4,

2022.

[35] L. Chen, M. Qiu, J. Xiong, "An SDN-Based fabric for flexible data-center

networks" in Cyber Security and Cloud Computing (CSCloud),” IEEE 2nd

International Conference, pp. 121-126, 2015.

[36] Venkatesh Kodela, “Improving load balancing mechanisms of software defined

networks using Open Flow,” Jawaharlal Nehru Technological University, India, August

2016.

[37] GeeksforGeeks, “Load Balancing on Servers (Randomized Algorithm),” [Online].

Available: https://www.geeksforgeeks.org/load-balancing-on-servers-random-

algorithm/:15 Nov, 2015.

[38] GeeksforGeeks, “Linearity of expectations,” [Online]. Available:

https://www.geeksforgeeks.org/linearity-of-expectation/: 28 June, 2021.

https://www.geeksforgeeks.org/linearity-of-expectation/

66

APPENDICES

A. Appendix A: Simulation in mininet

A.1. Creating Multi-Controller Topology

Fig A- 1 Creating Multi controller Topology

➢ sudo: a command to run as a root user of all privileges

➢ mn: a command to set up a mininet emulator with sudo command

➢ --topo single, 8: a command to create a linear topology with 8 nodes in the

mininet emulator.

➢ --mac: Auto set MAC addresses

➢ --arp: Populate static ARP entries of each host in each other

➢ --controller,port : software defined controller with remote options on

predefined port.

➢ --switch=ovs,protocols=Open Flow10: Open flow switch with Open flow

protocol 10.

A.2. Connecting to the two remote controllers, adding links, starting controllers &

switches in mininet

Fig A- 2 Connecting to Multi-Controller and adding hosts

67

A.3. Running Random Load balancing algorithm on SDN POX controller one

Fig A- 3 Running Random Load Balancing Algorithm on Controller one

➢ /POX.py : run POX controller

➢ Log. Level --DEBUG : log level as DEBUG open flow messages

➢ Open Flow.of_01 –port: connect to remote controller on port 6633 using Open

Flow protocol

➢ Misc.ip_loadbalancer : is a random load balancing algorithm defined in POX

controller

➢ --ip : create Virtual IP(VIP) for load balancer

➢ --servers: create servers with listed ip addresses.

A.4. Running Random Load balancing algorithm on SDN POX controller Two

Fig A- 4 Running Rando Load balancing algorithm on controller two

68

A.5. Creating hosts as HTTP server

Fig A- 5 creating 8 hosts using Xterm

➢ Eight hosts are created using Xterm

➢ Six of the hosts are acting as an http server running on port 80 using python –m

SimpleHTTPServer 80 & command.

➢ When two of the hosts are acting as a client generating concurrent HTTP

requests.

A.6. Connecting client nodes with http server at port 80 using curl command

Among the eight hosts created h7 is connected to the first load balancer using this

command

Curl 10.0.1.1

69

Fig A- 6 connecting h7 as a client node

A.7. Connecting client nodes with http server at port 80 using curl command

Host eight (h8) is connected to the second load balancer using this command curl

10.0.2.1

Fig A- 7 Sharing a load on Open flow based Multi-Controller

70

Fig A- 8 running the two load balancers to share a client load on Multi-Controller

