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Abstract  

The Man-in-The-Middle attack is a kind of cyberattack where a perpetrator intercepts an ongoing 

communication between two parties and use this communications breach to either eavesdrop on 

the communicated message or alter the message prior to reaching the intended legitimate 

receiver. In any IoT network, the basic purpose of any smart device in the network is taking part 

in collecting large amount of data from various sensors located in geographical dispersed 

locations and relay this information to a Master-Device in the IoT network. Once these collected 

sensors’ data reach the Master device, it relays the sensors’ data to a central database or server 

via gateways wirelessly. IoT devices are usually designed to be deployed in a mass scale and are 

also designed to operate in remote and hard-to-reach areas. IoT nodes are usually battery 

powered or scavenge power from their surroundings. Hence, IoT device manufacturers give little 

emphasis to security.  In fact, IoT device manufacturers’ main goal is designing nodes that get 

the job done whilst consuming as little power as possible for as long as possible. Despite their 

wide spread use and ubiquity, IoT networks are highly vulnerable to cyber-attacks like MitM 

attacks, and identification of these malicious behaviors is mandatory as tampering IoT data in a 

malicious manner by adversaries could lead to real-time, real-life catastrophes. 

The main objective of this study is building a machine learning model that detects modified 

sensors’ records that originated from IoT networks infected with ARP cache poisoning based on 

the IoT network’s data patterns. Therefore, to build the model, both Normal and Attack data 

needed to be generated from an environment that mimics an IoT Network.  

Hence, for this study, an IoT testbed was built using the NodeMCU ESP32 IoT Module which 

acts as the master device in the IoT network, a DHT22 Temperature & Humidity Sensor, an 

MQ2 Gas Sensor, a SW-420 Vibration sensor, and a wireless router. An Adversarial system was 

also built using a DELL® Core-i3 laptop which runs on Kali Linux with a processor speed of 

2.1GHZ and a total installed RAM of 4GB.In this Testbed, data captured form the three sensors 

are Temperature, Humidity, Smoke in Parts-Per-Million and the level of vibration which are 

transmitted to a cloud named ThingSpeak server via a wireless router.  

In the normal phase, sensors’ values are extracted by the NodeMCU device and then transmitted 

to the ThingSpeak cloud. This data is then labeled as ‘Normal’ data. The attack phase is 

performed by the adversarial system which intercepts data coming from the NodeMCU device, 

modifies it and sends these modified Sensors’ readings to the ThingSpeak cloud. This data is 

labeled as ‘Attacked’ data. Machine learning classifiers such as SVM, Naïve Bayes, Decision 

Trees, KNN and Adaboost are built to differentiate the sensors’ data as ‘Normal’ or ‘Attacked’ 

data using the Weka Explorer software based on the IoT Network’s Sensors’ records. From the 

five candidate algorithms, Decision Trees had the highest accuracy of 95.125 %. 

Keywords: IoT Networks, IoT Vulnerability, IoT Network Attacks, Address Resolution Protocol 

Poisoning, Machine Learning  
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  Chapter One 

   Introduction 

1.1 The Internet of Things (IoTs) 

The Internet of Things (IoT) is a network of smart devices that is composed of sensors, actuators, 

wireless gateways/ routers, and a programmable central microcontroller or other kind of 

processor which has the capability of being connected to the router / gateway wirelessly.  

Embedded systems are a subset of IoTs in which a group of sensors and actuators are connected 

to a central electrically programmable and erasable microcontroller or other kind of processor 

which lies at the heart of the IoT network that is responsible for the communication, 

computational processing and analytical reasoning tasks needed in the IoT network.  

Sensors in the IoT network are responsible for gathering changes in the physical environment 

like temperature, humidity, angular orientation of objects, pressure etc. and send these physical 

environmental changes to the microcontroller or processor in a way that is understandable by the 

processor in either a digital or analog format. Once the processor receives data from the sensors, 

it then performs necessary computations as per the received data and decodes the sensors’ 

readings to control actuators embedded to it. These actuators might be as trivial as small LEDs 

(Light Emitting Diodes) or as complex as memory devices which usually communicate to the 

processor using embedded systems communication protocols or the actuators even might be 

other nodes in the IoT network. Both sensors and actuators are connected to the peripherals of 

the microcontroller or processing device.  

In the case of IoTs, the microcontroller or processor found in the IoT network is capable of 

connecting to routers or other nodes in the network wirelessly besides performing computational 

processing and analytical reasoning. Processors used in both embedded systems applications and 

IoT networks are usually battery powered and the microcontrollers that make up the heart of the 

network are resource constrained in terms of Power, RAM, and ROM. 

Nevertheless, ever since their advent, IoTs became ubiquitous as engineers and tech-enthusiasts 

found ways to deploy them in various aspects of our lives. IoTs are found everywhere starting 

from small wearable devices like PDAs (personal digital assistants), Smart homes, to remote 

medical monitoring devices. Recently, IoTs are even being deployed in power grids and other 

mission critical infrastructures.  
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1.2 Machine Learning  

Machine learning is a branch of Artificial Intelligence and computer science that focuses on 

analyzing data and recognizing patterns in the data using statistics, mathematical computations, 

and computer algorithms to mimic the way we humans learn and gradually improve accuracy 

[1]. 

 

Machine learning equips computers to learn and improve automatically from experience without 

being explicitly programmed. In machine learning, the process of learning is entirely dependent 

on the amount and clarity of data presented to the algorithm. The learning phase begins with 

observations on the data, performing analysis on the data, discovering patterns in the data, and 

finally make predictions based on the knowledge obtained from the training dataset and 

examples provided to it. Intelligence requires knowledge, hence, it is generally endorsed to 

provide computers with as much knowledge as possible to make them intelligent. 

 

Supervised machine learning is a subset of machine learning where an algorithm teaches a model 

from a dataset labeled as a training dataset and makes predictions based on that model. Hence, 

generally speaking, the presence of large amount of training dataset and clarity of the dataset is 

imperative for building a model that makes accurate predictions. 

 

  1.3 Man-in-the-Middle attack  

Man-in-the-Middle attack (MitM) is a type of cyber-attack in which an adversarial system or 

attacker secretly intercepts or infiltrates the communication between two parties and either 

secretly eavesdrop on the communicated data or alter the data and send this forged data to the 

receiving party disguised as the legitimate sender.  

 

MitM can be further classified as passive MitM attack and active MitM attacks. In the case of 

passive MitM attack, the adversary secretly intercepts the communication and simply eavesdrop 

on the communication without altering the data. However, in the case of active MitM attacks, the 

perpetrator initially intercepts the communication, alters the data and send the modified data to 

the receiving party as if the message was untampered with and came from the legitimate sender.  

 

In a Man-in-The-Middle attack, traffic between two devices is passed through a rouge malicious 

device that is controlled by the attacker. Thus, the attacker can get access to the original traffic 

and is able to read the communicated data if the communication is unencrypted, he may even 

inject malware to the traffic [5].  
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1. 4 Statement of the Problem  

According to [2], it is estimated that there will be 30.9 billion active IoT devices connected to the 

internet in real-time by the year 2025. However, little to no work is being done on addressing the 

security vulnerabilities found in IoT networks.  

The majority of microcontrollers or processors that make up the heart of IoT networks are 

generally battery powered and are specifically designed to do a single or few repetitive tasks. 

Hence, most of these processors inherently are resources constrained (i.e. Power, RAM & ROM 

Constrained). As a result, in most IoT application designs, a lot of emphasis is given to 

minimizing UP-time and prolonging battery life.  

 

For this reason, IoT chip manufacturers give more emphasis on producing smaller and faster 

chips that consume as low current as possible and prolonging battery life. However, the authors 

in [3], have stated that there are various attacks that target IoT devices and IoT networks, such as 

jamming, spoofing attacks, and exploiting vulnerabilities to gain unauthorized access to the 

network.  

 

One attack that targets IoT networks is the MitM attack and mitigation strategies proposed for IT 

networks like encryption to combat MitM attacks in IT networks is generally not suitable for IoT 

processors since these devices are resource constrained and the fact that these processors usually 

run on batteries; Hence, even if encryption adds a layer of security in IoT networks, encryption 

also negatively affects battery life and incur additional overheads on the Microcontrollers of the 

IoT network. Therefore, simply implementing traditional mitigation strategies proposed for IT 

networks to combat MitM attacks wouldn’t work flawlessly for IoT MCUs because of their 

resource limitations and few Machine Learning models are developed to identify attacks based 

on the IoT Network’s data Patterns or the network’s sensors’ records [4].  

 

Although the authors in [31] prepared an IoT testbed to generate MitM attacks on an IoT testbed 

and used this data to train different supervised ML algorithms in detecting the attacks based on 

the IoT network’s data patterns, the authors were limited to comparing the machine learning 

algorithms and figuring out which ML algorithm is best in detecting the attacked network’s 

sensors’ records. Furthermore, the authors in [31] used only a single sensor and used data 

comprised of just 480 records to train, test, and compare their ML models.   

To train machine learning models with a better training dataset and acquire highly accurate 

predictions, it is imperative to use a large training dataset with high quality in terms of clarity. As 

a general rule, the more the training data, the better the ML model will be. However, due to the 

unavailability of IoT sensors’ training dataset regarding MitM attack on IoT networks, part of 

this study focuses on creating the training dataset itself.  
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Hence, to address the aforementioned problem, the following research questions are formulated:  

 What is the best machine learning algorithm in detecting MitM attacks in IoT 

environments based on the IoT Network’s data patterns?  

 

 How to build a ML model that detects MitM attacks in IoT environments based on the 

IoT Network’s data patterns? 

 

1.5 Objectives of the Study 

1.5.1 General objective  

The General Objective of this study is to design a Machine Learning Model that detects MitM 

attacks in IoT networks based on the IoT network’s data patterns. 

1.5.2 Specific objectives  

In order to achieve the general objective, the following steps will be taken: 

The specific objectives of this study are:  

 Conducting literature review related to this study  

 

 Determining potential supervised machine learning algorithms to be used in this study  

 

 Building an IoT testbed for generating ‘Normal’ and ‘Attacked’ Datasets  

 

 Building the machine learning models  

 

 Evaluating the models and making predictions using the best ML model 

1.6 Scope and limitations of the study  

The scope of this study is to identify the best supervised ML algorithm in detecting sensors’ 

records coming from MiTM infected IoT networks using the training dataset generated by the 

IoT testbed. Once the best ML algorithm is identified, the model makes predictions on a set of 

sensors’ records and attempt to predict whether a given IoT network’s sensors’ record is either 

Normal or Attacked.   

The limitation of the study is the fact that, the IoT testbed used in this study is comprised of a 

single IoT module, 3 sensors, and 4 sensor attributes.  Hence, limiting the complexity of data. 

The other limitation of this study is that, the ML models developed in this study could only be 
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applicable in detecting infected IoT network’s sensors’ records, only for sensors’ records that 

have originated from the same environment the training data was collected from.  

1.7 Significance of the Research  

Having a ML Model that detects MitM attacks in IoT Networks without compromising the 

Power, RAM, and ROM constraints inherent to IoT’s Microcontrollers and using just the IoT 

Network’s data patterns will not only enhance IoT security but also validates the source of the 

communicated information which is dreadfully needed in IoT environments as, nowadays, IoT 

applications are ubiquitous and are found in every aspect of our lives; some are even being 

deployed in mission-critical governmental infrastructures.   

Besides the aforementioned points, this research will also provide the following merits for 

further studies and other scholars interested in the area:  

 Creating an IoT testbed using an ESP32 NodeMCU IoT module, a DHT22 temperature 

& humidity sensor, an MQ2 Gas Sensor, and a SW-420 vibration Sensor. 

  

 This study also provides both ‘Normal’ and ‘Attacked’ datasets for scholars interested in 

doing research in this area.   

 
 

1.8 Organization of the Research 

This study is organized in five chapters. The first chapter is an introductory part, while the 

second chapter of this study assesses studies related to this one, the third chapter of this study 

discusses about the methodology, design and experimental setup used in this research, the fourth 

chapter addresses evaluations and demonstration on the ML models, and the last chapter, chapter 

five is about conclusion and recommendations for future work.           
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             Chapter Two 

Literature Review 

2.1 Internet of Things (IoT) 

The Internet of Things or IoT for short is a group of wirelessly connected electronic devices used 

for communicating with one another for the purpose of sharing, relaying, and analyzing sensors’ 

or actuators’ digital data to either log the sensors’ and actuators’ parameters to a central database 

or activate actuators that might be embedded to IoT networks based on environmental changes 

obtained from sensors embedded to the IoT networks. 

Embedding sensors and actuators to intelligent Microcontrollers and other programmable 

processors dates a few decades back. However, apart from trivial endeavors like connecting 

vending machines to the internet, the progress was fairly slow as back then, the production cost 

of microcontrollers was extremely high, they were big in size and were only capable of executing 

a few instructions per second which all contributed to a sluggish progress [6]. Despite the slow 

progress of connecting electronic devices to the internet, the term “Internet of Things” or “IoT” 

until 1999, was not known, until it was finally coined by an English tech pioneer by the name 

Kevin Ashton [6]. Even if Kevin Ashton came up with the vision of connecting sensors, 

actuators, and processors to the internet and coining the term “IoT”, the technology back then 

simply didn’t allow his vision to become a reality for another decade [6].     

The Internet of Things or IoTs is a description for the networks and interconnections amongst 

physical things which are technologies that have embedded sensors, actuators, and network 

devices that are used for establishing connections with other network devices and exchanging 

data amongst one another over the internet [7]. These devices or objects, or “things” range from 

minute household objects to extremely sophisticated and intricate mission-critical industrial 

devices [7]. 

According to [8], IoTs or the Internet of Things are a group of interrelated and networked 

devices or ‘things’ which might be animals, objects, machines or even people where any ‘thing’ 

or device in the network has its own unique identifier or id termed as UID or unique identifier 

which is an identifier used to traverse data on the network autonomously without the need for 

direct human to computer or human to human or interactions.   

According to [9] and [10], IoTs or the Internet of things are a collection of smart and intelligent 

electronic devices with ON / OFF switches that use the internet and the internet protocol address 

or IP addresses to transfer and analyze digital data which usually regards to environmental 

parameters of the surrounding they’re immersed in, in the absence of direct human intervention 

over the internet using the wireless communication medium.    
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2.1.1 Devices and Inner workings of IoT Networks  

IoT networks are made up of vast number of objects or things of various types, shapes, and sizes 

ranging from small household intelligent-light-bulbs that turn themselves “ON” after recognizing 

the presence of humans or object in a given environment and turn themselves “OFF” in the 

absence of  humans or objects autonomously, to smart microwaves, which automatically begin 

cooking food after calculating the time it takes for the owner to get back home using his / her 

current location obtained from GPS modules installed in the owner’s smart car once the owner’s 

car gives signals to the microware he / she is returning home from a long day of work. IoT 

networks could also be found in extremely complicated and intricate self-driving cars, which 

makes use of vast amount of sensors’ data gathered and analyzed using their complex and 

intricate network of sensors and microcontrollers embedded on the car that detects objects and 

obstacles in their path and instructing the car to take necessary actions after synthesizing sensors’ 

readings mounted on the autonomous car. The smart car could also make use of sensors’ data 

obtained from sensors installed on the routes the car is travelling on.  

To their very core, any IoT system is comprised of at least 4 set of components; 

i. Sensors  

ii. Microcontrollers or Processors   

iii. Hubs or  Gateways 

iv. Actuators  

Sensors: Sensors in the IoT network are used to sense environmental variables like temperature, 

humidity, and atmospheric pressure of the surrounding they’re immersed in. These sensors then 

convert these physical environmental variables to either an Analog format in the form of a 

varying voltage or current or to a digital format in the form of 1s and 0s and relay this data or 

information to a Microcontroller or processor found in the IoT network.   

Microcontrollers or Processors:  The Processors or Microcontrollers are the most vital 

components that make up the hearts and brains of any IoT network or any embedded systems 

application as these are the devices responsible for the analytical reasoning, computational 

processing, and the communication tasks needed in the IoT network.   

A Microcontroller in its simplest definition is a single-chip computer which has to the minimum; 

Input and Output ports or IO ports, RAM (Random Access Memory), ROM (Read Only 

Memory), and CPU (Central Processing Unit) all itched into a single silicon chip during 

manufacturing.  

The word microcontroller which is also called embedded controller is basically derived from two 

words; Micro and Controller. The term micro is used to depict the size of the controller and the 

word controller is used to depict that the device is used to control things or objects embedded to 

its peripherals [11].  
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Unlike a Microcontroller, A Microprocessor is basically a CPU (Central Processing Unit) that’s 

sole purpose is performing millions or even billions of computations on data fed to it in a very 

minute amount of time normally in micro-seconds and even nano-seconds recently. In other 

words, a Microprocessors depend on external devices like Analog to digital converters, digital to 

analog converters, clock circuits, RAM, ROM, and IO ports to be used in embedded systems or 

IoT applications.  

The execution of tasks by a microcontroller solely depend upon the set of instructions or user-

defined programs which reside in the microcontroller’s EEPROM or flash memory. To 

accomplish this, the microcontroller fetches each and every one of the instructions stored in its 

EEPROM or Flash memory and loads each instruction to its RAM one by one, decodes these 

instructions and finally execute the required operations as per the instructions loaded on it.  

Generally, Microcontrollers are designed to do a single or very few tasks repeatedly in a 

continuous and never ending cycle unless power is interrupted. However, microprocessors are 

generally designed to be used in a variety of applications like those found in personal computers.  

The other factor to consider is that since the general production and shelve cost of 

microcontrollers are very cheap as compared to general purpose microprocessors, it is basically 

unfeasible to deploy microprocessors in IoT networks as IoT networks are made up of thousands 

or more nodes.  

Traditionally microcontrollers used to be programmed using the assembly language commands 

that were basically unique to a specific device and each assembly language differed from device 

to device. Although assembly language is fast, it comes with several drawbacks. The Assembly 

language is made up of various microcontroller manufacturer specific mnemonics which not only 

forces a programmer to learn a new set of assembly language instructions for every device he / 

she attempts to program but also makes maintaining, debugging and learning programming 

microcontrollers using assembly language much more difficult than need be [11].  

Recently, microcontrollers could be programmed with high-level languages such as C, C++, 

Java, and recently even using Python. The fact that high-level languages are much easy to learn 

and are easy to debug as compared to assembly language has made the development of large and 

complex firmware (Microcontroller’s Program) relatively easy.  

Basically, a microcontroller executes a user-defined program stored in its program memory 

coupled with data received from external sensors (inputs) that are connected to the input ports of 

the microcontroller and uses this data to control actuator devices (outputs) that are connected to 

the output ports of the microcontroller.  
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To clarify and illustrate this concept, Figure 1 shows a microcontroller application which is used 

to automatically control the temperature of a given room.  

 

    Sensors                                            Microcontroller                    Actuators   

 

Figure 1: Simple Microcontroller based embedded systems application 

Hubs or Gateways:  IoT gateways or IoT hubs in the IoT network are used to relay information 

back and forth between IoT nodes and central servers that are physically apart from one another. 

These wireless communication devices are usually used to send sensed environmental data 

obtained using the IoT network’s sensors’ to the cloud, a central database, or even to other nodes 

found in the IoT network. IoT hubs and gateways could also be used to relay execution 

commands coming from a central server to actuate or activate actuators connected to the IoT 

nodes.  

Actuators: Actuators are nothing but devices in the IoT network that actuate or get activated 

when certain conditions are met. An actuator in the IoT network could be as small and trivial as a 

small Light emitting diode (LED) or complicated as memory chips or other intricate embedded 

systems devices. However actuators in an IoT network, unlike traditional actuators found in 

embedded systems could also be remote databases located elsewhere in the IoT network that are 

accessed via the hubs or gateways wirelessly.   
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Figure 2: Example of an IoT System [8] 

Figure 2 illustrates a typical IoT environment. However, microcontrollers used in IoT 

environments are usually capable of connecting to the internet or to a central server on their own 

without the need for additional communication devices. This is because during manufacturing, 

WiFi (Wireless Fidelity) capability is embedded on the Microcontroller’s silicon chip along with 

other functionalities.  

2.2 Machine Learning  

Machine learning is a branch of computer science and statistics that studies about the science 

behind; how machines could be used to make better predictions and decisions based on a training 

data that is provided to it autonomously without being explicitly programmed. To the very 

basics, machine learning algorithms could be subdivided in to two categories namely; supervised 

algorithms and unsupervised algorithms.  

2.2.1 Supervised Machine Learning 

In supervised machine learning, a learning algorithm is given a labeled training dataset with 

special features or attributes (typically € Rn×d) and training labels (regularly € 0, ln×k within the 

case of multi course classification or € Rn in the case of regression) and inquired to learn a model 
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or function that will outline new items form the same feature space to a prediction within the 

label space. In the above explanation the letter n is used to denote amount of training examples 

and the letter d is used to denote the amount of training features used in training the supervised 

machine learning algorithm [12].  

Likewise, k is used in the case for multi-class or multi-label problems to represent the number or 

distinct label values [12]. A learning algorithm will generally identify the model parameters that 

minimize some loss function between the training examples and training labels [12]. Common 

types of supervised learning tasks include classification tasks such as text categorization, speech 

detection, defect reorganization, image recognition, and regression that attempts to learn the 

mapping between the input data and real-valued number [12].  

In the case of supervised machine learning algorithms, the final goal of the algorithm is 

predicting the outcome of a given set of data based on what it have learnt using a labeled training 

dataset. Supervised machine learning algorithms predict outcome values using a given set of 

predictors and finally come up with a supervised machine learning model that accurately predicts 

the outcome of a dependent variable using the variable’s independent variables.  

2.2.2 Unsupervised machine learning 

Contrary to supervised machine learning techniques, unsupervised machine learning algorithms 

are NOT trained with examples and their correct answers; rather their purpose is to find patterns 

within a set of data where no one piece of the data is the answer [16]. In the case of unsupervised 

machine learning, the whole purpose of the algorithm is articulated towards identifying hidden 

patterns in the dataset [16]. Hence, unsupervised machine learning algorithms are usually used 

for grouping and clustering purposes [16].  

2.2.3 Other types of Machine Learning 

In addition to the aforementioned, supervised and unsupervised machine learning algorithms, 

other types of machine learning algorithms also exist. A semi-supervised machine learning 

algorithms work on data that only partially labeled and is often used in the important task of 

knowledge base construction [17].  A Reinforcement learning type of machine learning 

algorithm typically comes in handy in the study of robotics and addresses the training of models 

using trainings and punishments [17].   

Some of the most commonly used supervised machine learning algorithms are; linear regression, 

logistic Regression, decision Trees, Support Vector Machine (SVM), Naïve Bayes, KNN, and 

AdBoost amongst which the last five algorithms are used in this thesis work.   

Linear Regression: Linear regression is a most commonly used type of supervised machine 

learning algorithm where the linear regression algorithm’s model is trained and designed to make 

predictions on a given dataset and show the link between variables [13]. In linear regression, the 

link or existing association between the labeled dataset’s dependent and independent variables is 
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depicted by drawing a straight line. The regression line could be represented by a line of a linear 

equation such as: Z = D * M + E [13].  

In the above linear equation:  

Z: is used to represent the dependent Variable in the dataset 

D: is used to represent the slope of the regression line  

M: is used to represent the independent variable in the dataset  

And E: is used to represent the Intercept   

The coefficients D and E are stemmed based on attenuating the summation of the squared 

difference between the regression line and the data points in the graph [13]. Figure 3 below 

illustrates a linear regression with the equation Z = 0.2811 M + 13 between the body and height 

of a person [13]. So using this equation, we can find the weight of a person given his or her 

height.  

         

                                               

Figure 3: Linear regression between Weight and Height [13] 

Linear regression can subdivided to two types of regressions namely; Multiple Linear regression 

and simple linear regression [13]. The basic difference between simple linear regression and 

multiple linear regression is the fact that in the case of simple linear regression the number of 

independent variable is a single variable, however, in the case of multiple linear regression, there 

exists two or more independent variables [13].   

Logistic Regression: Logistic regression like linear regression is a classification algorithm not a 

regression algorithm as the name implies. Logistic regression is used to estimate discrete values 

(Binary Values like 0 or 1, Yes or NO, TRUE or False) based on a given set of independent 

variable(s) [13].  Unlike linear regression, logistic regression is a type of supervised machine 

learning algorithm that predicts the occurrence probability of an event using logit regression or a 
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logit function [13]. Since logistic regression predicts probability, its output values lie between 0 

and 1.  

The odds of probability is as follows:  

Odds = P / (1 - P)  

Ln (Odds) = ln (P / (1 - P)) 

Logit (P) = ln (P / (1 - P)) 

 

In the above equation:  

P: Probability of event occurrence  

1 – P: Probability of not event occurrence  

                                 

Figure 4: Graph of a Logistic Regression [13] 

Decision Trees: When it comes to decision trees, the parameters that are learned re the questions 

about the data and are basically flowchart like structures that lets classifying input data points or 

predicting output values based on given inputs [14]. Decision trees are an effective type of 

classifier machine learning algorithms which are easy to interpret and visualize [14].   
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Figure 5: Decision trees [14] 

Support Vector Machine (SVM):  SVM is a type of supervised machine learning algorithm 

used for classifying a dataset’s records after analyzing the dataset [13]. During the learning phase 

of SVM algorithm each data point or item is first plotted on a graph where the graph’s dimension 

of space is based on the number of features [13].   

 

Figure 6: SVM graph between a person’s hair length and height [13] 

Naïve Bayes:  Naïve Bayes like decision tress and SVM is a supervised machine learning 

algorithm that is used to make predictions on independent variable by utilizing Bayes’ theorem 

and assuming the existence of a particular feature in a class unrelated to the existence of any 

other feature [13].  

The Bayes theorem basically endows a means of calculating the posterior probability i.e. P (c|x) 

from P(c), P(x), and P(c|x) [13].  
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In the above equation:  

 Probability P (c|x) is the posterior probability of (target) given predictor (attribute). 

 Probability P (c) is the prior probability of class. 

 Probability P (x|c) is the likelihood which is the probability of predictor in a given class. 

 Probability P(x) is the prior probability of predictor. 

 

AdaBoost: AdaBoost is short acronym for adaptive boosting.  In Ada boost algorithm, a weight 

is applied to every example in the training data and this weight vector is called D and in the 

beginning, all these weight are equal [15]. During the training phase of adaboost algorithm, 

initially a weak classifier is made to train on the data, later the errors made by the weak classifer 

are calculated and the same weak classifier is then trained for a second time with the same 

training dataset [15]. However, on the second time of training, weights of the training dataset are 

adjusted for making the algorithm more accurate and to achieve this, during the second phase of 

training examples correctly classified initially are weighted less and those that were incorrectly 

classified are given more weights [15].  

For the sake of getting a solo answer from all weak classifiers, adaptive boosting assigns α 

values to each weak classifier [15].  

α values in the case of adaboost are based the error of each weak classifier in the algorithm [15].  
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The error is represented by the symbol Ɛ which is calculated as:-  

           The Number of incorrectly classified examples  

                       Total Examples  

And the value of weak classifiers represented by the symbol α is calculated as:-  

                    (1 / 2) * ln ((1 - Ɛ) / 2) 

 

    

  

Figure 7: Schematic representation of Ada Boost [15] 

KNN: KNN which is an abbreviation for, K Nearest Neighbor, is a type of machine learning 

algorithm that could be used as either a classifier algorithms or as an algorithm that could be 

used in solving regression problems [42].  
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2.3 Attacks in IoT Networks 

IoTs are changing the quality of life in every way imaginable at an exponential rate. It is a good 

thing that these days, we could control the temperature of our home miles away and even turn 

ON our stoves before we reach home, all made possible because of IoTs. It is a matter of time 

but inevitably sooner or later, everything connected the internet is prone to cyber-attacks, and 

IoTs are no exception.  

In an IoT network whenever a command or data is communicated between a user and an IoT 

device, the data or command passes though all four steps of the TCP/IP model, and here the 

communicated data or command is exposed to a plethora of cyberattacks.   

According to [18], IoT Networks are exposed to at least 10 kinds of different cyberattacks:  

i. Physical Attacks  

Physical Attacks occurs when IoT devices are accessible by anyone who has access to the 

physical devices themselves. According to [18], most physical attacks infiltrate a given 

network via an inside perpetrator with a deliberate intent of injecting the malicious codes that 

usually reside in a flash memory onto the network.  

ii. Encryption Attacks 

Encryption attacks target IoT communications when the communicated data is usually 

unencrypted, hence opening the door for an adversary to capture and sniff the communicated 

message if the adversarial system wishes to do so [18]. In addition to that, once encryption 

keys are unlocked by an adversary, the adversary can take control of the system by installing 

his or her own algorithm [18]. 

iii. DoS (Denial of Service) 

A Dos Attack is an attack that occurs when a service becomes unavailable due to various 

perpetrators sending continuous but futile requests to a server for the sole purpose of 

exhausting the system and finally forcing it to a halt.  

iv. Firmware Hijacking  

Firmware is an alias for Microcontroller’s software. Firmware Hijacking occurs when an IoT 

device attempts to perform firmware updates. Another way that firmware hijacking occurs is 

when perpetrators use the firmware update feature to install malicious code for their own 

benefits.  
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v. Botnets  

These are types of IoT attacks which occur when an attacker turns a group of networked IoT 

devices to bots as part of a botnet that is controlled by the attacker [18]. Botnets have the 

capability to use networked smart devices to transfer private and sensitive data to a location 

set by the perpetrator.  

vi. Man-in-the-Middle Attacks  

MiTM attacks occur when the legitimate communication between two legitimate 

communicating entities is secretly intercepted by an attacker or adversarial system. In a 

MiTM attack, the adversary tricks both parties that one is communicating with the other. 

Once the adversary intercepts the communication, he or she can manipulate and alter the 

communicated data and send it to the receiver as if it came from the legitimate sender.   

vii. Ransomware 

Ransom is a type of malware that locks down access to sensitive data and information that 

resides in the victim’s system by encrypting them and rendering them futile to the user.  

viii. Eavesdropping  

In this type of attack, a perpetrator intercepts a weak communication network and 

continuously listens IN on the communication passively without altering the communicated 

data in any manner.  

ix. Privilege Escalation  

In this kind of attack, adversaries look for bugs and vulnerabilities in IoT devices and once 

these vulnerabilities are discovered, the adversary plants malware on an IoT device and steals 

confidential data.  

x. Brute Force Password Attack  

In a brute force password attack, adversaries attempt to gain access to a network by 

submitting many passwords with the hopes of finding the correct password eventually after 

many attempts. Sometime adversaries even use automated software that generate random 

guesses for them. If they succeed in gaining access to the network, they will plant a malware 

on the device and later use this malware to steal confidential data.  

2.4 Man in the Middle attacks (MitM) 

A man-in-the-middle attack is a common type of attack where perpetrators immerse themselves 

in the middle of a communication happening amongst other communicating parties and once the 

perpetrator is inside the communication channel, the perpetrator can eavesdrop on the 
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communicated message silently or even alter the message before it reaches the intended 

legitimate receiving party.  

Nevertheless, MiTM attacks existed centuries prior to the appearance of IoTs and even 

computers in general. To show the very basics of how MiTM attack works, a typical MiTM 

example is a malicious secretary who opens sealed memoranda messages and either read the 

messages or even alter the contents of the memoranda messages prior to giving the memoranda 

to the intended receiver. In the era of modern computers, MiTM attack is executed using 

different techniques such as ARP cache poisoning, Session Hijacking, DNS cache poisoning etc.  

However, all of the techniques basically intend to intercept a communication occurring between 

two parties. Figure 8 below shows how to execute MiTM attack using ARP cache Poisoning.  

Figure 8 shows how we can exploit the vulnerabilities of ARP protocol to execute MiTM attacks 

by poisoning ARP caches. The ARP cache table is designed to allow hosts in a network to map 

IP addresses other devices on the network to their corresponding MAC addresses. However, 

according to figure 8, if an attacker wishes to receive data intended to ‘Host B’, the attacker 

could forge an ARP reply message indicating that ‘Host B’s IP address maps to the attacker’s 

MAC address and advertise this packet by sending it to the network’s broadcast address. Hence, 

any other host connected to the switch attempting to send data to Host B, in reality will be 

sending the data to the attacker rather than the legitimate receiver, Host B which is pictorially 

illustrated in Figure 8. The attacker could be even more malicious and advertise itself as the 

Network’s default gateway [19]. Hence, any outbound targeted at remote hosts such as HTTP 

using online commercial websites containing sensitive users’ credentials would initially be 

routed to the attacker first [19]. Using this trick, if the adversary wishes, could now modify the 

communicated data and forward it to the correct gateway, hence creating the MiTM attack.    

 

 

 

 

 

 

 

 

 

 

Figure 8: Example of MiTM attack using ARP Poisoning [19] 
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In a typical MiTM attack, the attacker must possess control of one of the many firewalls, routers, 

or gateways through which the targeted communication traverses [20].  

An adversarial system could execute MitM attacks on an ongoing communication using several 

ways which might by poisoning the ARP caches or ARP tables of its targets, by spoofing the 

Domain Name system or by executing SSL Hijacking just to name a few [19].  

In past times, MitM attacks basically targeted vulnerable network devices like personal laptops, 

however, recently due to the mass deployment and even more exploitable vulnerabilities found in 

IoT devices, a tremendous number of users are on the verge of being exploited [19].  

2.4.1 Address Resolution Protocol (ARP)  

For the sake of traversing data packets from one end of a network to the other, a great number of 

internet services rely on the Transmission Control Protocol or TCP which provides virtual 

circuits for communication by sitting on top of IP [21]. This provision of virtual circuits is 

achieved by initially tearing apart a communicated data stream to individual IP packets which 

will later be merged back to a single data stream at their destination [21]. The Transmission 

Control Protocol also ensures each packet reaches its intended destination using acknowledging 

signals [21].   

Local Area Networks or LANs for short usually communicate with one another using Ethernet 

and by making use of each devices’ unique MAC [Media Access Control] addresses and IP 

addresses that are either statically or dynamically assigned by the LAN which is all achieved 

because of ARP as it is the one responsible for keeping records that maps IP addresses with 

MAC addresses [21].    

ARP translates IP addresses to MAC addresses, and vice versa [22]. Most of the time nodes on a 

network use ARP to connect to the World Wide Web via a gateway or router.  

In the ARP protocol, each host in the given network keep a record of IPs corresponding to 

individual MAC addresses using it ARP table as this information would come in handy when it 

wishes to communicate with other host in a later time but in the case when a host couldn’t find 

the corresponding MAC address for an IP address, it tries to establish communication with that 

device by broadcasting ARP request packets to all devices connected to the network [22].   

Unfortunately the Address Resolution Protocol was not designed having cyber vulnerability 

exploitations in mind and due to this weakness, ARP does not verify that ARP replies came from 

legitimate owners of the IP address it was searching for in the network, not only that, this 

protocol also allows hosts to accept ARP reply messages even if a host in the network never sent 

out ARP broadcast messages which widely opens the door for ARP spoofing or ARP poisoning 

attacks [22].  
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Figure 9:  ARP Poisoning or ARP Spoofing [22] 

 

2.4.1.1 ARP Poisoning or ARP Spoofing  

ARP poisoning or ARP spoofing, is a type of MitM attack that allows perpetrators intercept an 

ongoing communication between two networked devices. The operation of ARP poisoning is 

listed as follows [22]:  

1. The first thing the adversary performs prior to intercepting the communication is gaining 

access to the network and once the perpetrator is inside the network he / she then 

determines at least two target devices [22]. Let’s assume the two target devices are a 

workstation computer and a router  

 

2. Now since the attacker has infiltrated the network, he / she needs to send out forged ARP 

responses to the targeted devices using spoofing tools such as Ettercap [22].  

 

3. The attacker forges fake ARP responses for tricking both workstation and router that the 

MAC address for both target devices’ IP address is the attacker’s own MAC address and 

deceits both devices to connect to the perpetrator itself, rather than to each other [22].  

 

4. Once the workstation and router update their ARP tables with the forged ARP responses, 

the two devices assume they are communicating with each other but in reality, both 

devices are unknowingly communicating to the attacker’s machine [22].  

 

5. This deceptive act committed by the attacker’s system allows the attacker’s machine to 

lay amid all ongoing communications conducted between the workstation and router 

[22].  

The whole aim of ARP poisoning is to allow an adversarial system’s machine pose as both sides 

of an ongoing communication [22]. Figure 9 illustrates how an ARP poisoning or ARP spoofing 

takes place.  
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Once the perpetrators succeed in executing an ARP poisoning attack, they can continue routing 

the communication as-is (they can read sensitive data), perform session hijacking (gaining access 

to accounts the user is currently logged into), and alter communication (inserting a malicious file 

or altered data) [22]. 

2.5 Related Works 

As shown by Lawrence [23], IoT networks are highly vulnerable to software layer attacks which 

usually involve remote network attacks that exploit vulnerable communication protocols, weak 

cryptography implementations, malware, and social engineering attacks. The study conducted by 

N. Vlajic et al [24], showed experiments conducted on IoT based webcams regarding the 

executing DDoS attacks on the webcams and suggested means to prevent the DDoS attacks. In 

their study, the attacks were categorized based on the layer of origin of attack which were the 

physical, network and application layers.  

The study conducted by Andrea et al [25] explored the security goals required for secure IoT 

systems, and classified security challenges and issued using new countermeasures for four 

classes of attacks; Physical, Network, Software, and Encryption attacks. Furthermore, future 

directions for IoT networks security were discussed in [25].    

The study conducted by Liang Xiao et al [26], demonstrated using supervised ML, unsupervised 

ML, and reinforcement learning techniques to keep users’ privacy in IoT networks by addressing 

attacks such as spoofing attacks, denial of service attacks, frequency jamming attacks and 

eavesdropping on IoT device communications. The study conducted in [26] focused on keeping 

the data privacy of users by the use of ML based access control, malware detection, secure 

offloading, and IoT authentication.  

The study conducted by K.V.V.N.L Sai Kiran et al [31], demonstrated a comparison of 

supervised machine learning models in detecting MiTM attacks in IoT environments based on 

the IoT network’s sensors’ readings. Their comparison was based on the ML models’ 

performance in detecting ARP poisoning infected IoT Network’s sensors’ records. For 

mimicking an IoT network, the authors in [31] prepared an IoT testbed using the ESP8266 IoT 

module and a single DHT11 Temperature & humidity sensor. For generating the MitM attack on 

their IoT test bed, the authors in [31] used a laptop running on Kali Linux.  

The study conducted by Mohammad Noor Injadat et al [27], proposed an optimized ML-based 

framework that combined Bayesian Optimization Gaussian Process (BO-GP) and decision trees 

classification model to detect botnet attacks on IoT devices. The aim of the study conducted in 

[27] was emphasized on creating an efficient and dynamic framework for IoT devices to detect 

botnet attacks.  

Using the ARP table tool, the defense tool against ARP attacks, is proposed in the study [28]. 

The study conducted in [29] described how to conduct MiTM attack in any network using Kali 

Linux and Ettercap. The study conducted by Chaabouni et al [30] proposed an architecture to 
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detect Network Intrusion Detection for IoT systems to detect known and unknown IoT attacks 

without being protocol-dependent and with less resource consumption, thus, with respect to IoT 

challenges.  

Nevertheless, the authors in [31] conducted a study using an IoT network’s sensors’ records and 

an infected their IoT network using ARP poisoning and used both dataset as a training dataset to 

compare different machine learning models to identify the best ML model in detecting MitM 

attacks in the IoT network. The authors in [31] were limited to comparing different ML models 

and figuring out the best algorithm in detecting infected Sensors’ readings. Furthermore, the 

other limitation of the study conducted in [31] is, whilst preparing the IoT testbed, the testbed in 

[31] was comprised of a single IoT module and a single sensor in addition, 480 records were 

used to train and test the ML models and comparison of the machine learning models was based 

on the 480 records the authors generated.  

According to the literature, this research observed that there exists various research on building 

Intrusion Detection System (IDS) for IoT networks based on their network patterns. However, as 

per the researcher’s knowledge, not many researches have been conducted in building IDS 

systems for IoT networks based on the IoT Network’s Sensors’ records.   

2.6 Summary of Related Works:  

The authors in [23], [24], and [25] have showed vulnerabilities in IoT networks and also showed 

how to exploit these vulnerabilities to generate various kinds of attacks on IoT networks. The 

authors in [26], [30], and [27] have showed how to build Machine learning models to mitigate 

attacks that attempt to exploit IoT network vulnerabilities based on the IoT networks’ network 

patterns. The authors in [29] have showed how to perform ARP poisoning using the Ettercap tool 

in Kali Linux and the authors in [28] have proposed ways to defend against attacks that target the 

Address Resolution Protocol. According to the literature review, this study observed that few 

machine learning models have been developed to identify MiTM attack in IoT networks based 

on the IoT networks network patterns and as per the researcher’s knowledge, no machine 

learning model have been developed to detect modified sensors’ records originating from MiTM 

infected IoT networks based on the IoT network’s sensors’ records. 

 Hence, this study aims at developing a machine learning model that detects intercepted and 

modified sensors’ data that originated from infected IoT networks based on the network’s data 

patterns or sensors’ records. The IoT testbed used in this study is comprised of an ESP32 based 

NodeMCU IoT module, a DHT22 Temperature & Humidity sensor, an MQ2 Gas sensor, and a 

SW-420 vibration sensor. In this research, for training and testing the candidate machine learning 

models, a total of 2,000 records have been used. Of the 2,000 records used in this research, 1,500 

records were of type ‘Normal’ and the remaining 500 were of type ‘Attacked’ sensors’ 

records.All sensors’ records i.e. ‘Normal’ and ‘Attacked’ sensors’ records are obtained from the 

IoT testbed developed for this study.  
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Chapter Three 

Research Methodology 

3.1 General Approach  

The research methodology used in this study is the Design Science Research (DSR) 

methodology. According to [38] Design Science Research (DSR) is a research paradigm that 

aims at creating innovative artifacts that will solve human problems and enhancing human 

knowledge. According to the authors of [39], Design Science Research aims to enhance human 

knowledge with the advent of innovative artifacts and the creation of design knowledge (DK) via 

innovative solutions for real-world problems.  

3.2 Specific Research Design 

This research is conducted using the cyclic process of DSR suggested by Peffers et al [41]. 

According to [41], DSR process is a combination of five core processes; these five processes are 

problem identification & Motivation, Defining Objective of Solution, Design & Development, 

Demonstration & Evaluation, and Communication.   

In this study, the DSR methodology is applied to design a model that detects MiTM attacks in 

IoT networks based on the IoT network’s data patterns using machine learning models. To 

achieve this, an IoT test bed is built that mimics an actual IoT network. Dataset used to train the 

machine learning models is generated using this IoT testbed. A detailed definition of each 

process used to generate both type of datasets is briefly described on the next sections.  

3.3 Experimental Setup of the IoT Testbed: 

IoT testbeds are platforms which are used to mimic an actual IoT network for the purposes of 

testing vulnerabilities in IoT networks. IoT test beds are also used to propose and test solutions 

that aim to mitigate IoT network vulnerabilities.       

The IoT test bed used in this study is comprised of both hardware and software components. The 

hardware components used in the IoT test bed used in this study include: the NodeMCU ESP32 

IoT module, the DHT22 Temperature & Humidity Sensor, the MQ2 Gas Sensor, the SW-420 

Vibration sensor, an ADSL wireless router, and an adversarial system.  The software components 

of the IoT test bed include: Kali Linux, WireShark, Ettercap, BurpSuite, the ThingSpeak cloud, 

the Arduino IDE, and Weka Explorer.  

A detailed description of the IoT Test Bed’s hardware and software components is given on the 

next sections of this study.  
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3.3.1 The IoT Testbed’s Hardware Components:  

The NodeMCU ESP32 IoT Module: The ESP32 is an IoT module developed and released by 

Espressif Systems® in September 6, 2016. The ESP32 incorporates WiFi and Bluetooth 

capabilities and harbors a Dual-Core Tensilica Xtensa® LX6 Microprocessor that uses a clock 

frequency of 2.4 GHz (Giga Hertz) [32]. The ESP32 is a successor of Espressif Systems’ 

infamous ESP8266 IoT module which unlike the ESP32 only provides WiFi connectivity. The 

ESP32 operates on 3.3 V DC, has a SRAM of 512 KB, and a flash memory of 16 MB all 

incorporated on a single chip [32]. Due to its cheap cost and minute size most IoT applications 

are built using the NodeMCU ESP32 IoT module.  

The NodeMCU ESP32 is used in this study to extract data from sensors and send readings of the 

sensors to the ThingSpeak cloud via a wireless router.  

The DHT22 Temperature & Humidity Sensor:  The DHT22 is a cheap Capacitive-type 

Humidity & Temperature sensor developed by Aosong Electronics. The DHT22 sensor operates 

in DC voltage ranges between 3.3 V – 6V. The DHT22 sensor senses relative humidity and has a 

wide operating temperature range of -40 to 80 degree Celsius.  The DHT22 sensor converts the 

temperature and humidity data to a digital format and sends this data to a master device using its 

data communication pin.  

The DHT22 Temperature & Humidity sensor is used in this study to sense temperature & 

humidity and send these parameters to the ESP32 master device.  

The MQ2 Gas Sensor:  The MQ2 Gas sensor is a sensor with high sensitivity and fast response 

time which is used to sense the concentration of certain gasses in an environment. Gases the 

sensor is able to sense are propane, methane, LPG, smoke, hydrogen, carbon monoxide and 

alcohol. The MQ2 operates on voltage ranging from 3.3V - 5V DC.  

The MQ2 is used in this study to sense the concentration of gases in the atmosphere and then 

send this parameter to the ESP32 master device. 

The SW-420 Vibration Sensor:  The SW-420 vibration sensor is a small vibration sensor 

released in September 2018 that is used for detecting vibrations in its environment. The SW-420 

senses the amount of vibration in its surrounding. The SW-420 sensor can operate anywhere 

between 3.3 V – 5 V DC. The sensor converts the sensed data to a digital format and sends this 

data to a master device using its data communication pin.  

The SW-420 is used in this study to sense the vibration level and then send this parameter to the 

ESP32 master device. 

The ADSL Wireless Router: The ADSL wireless router is used to connect the NodeMCU 

device to the ThingSpeak cloud. The ADSL router used in this study is the N 300 ADSL2+4-Port 

Router [35].  
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The Adversarial system: The adversarial system used in this study is a DELL®
 Core-i3 laptop 

which runs on Kali Linux with a processor speed of 2.1GHZ and a total installed RAM of 4GB.  

3.3.2 The IoT Test Bed’s Software Components  

ThingSpeak: ThingSpeak is an online IoT analytics platform that allows IoT developers to store, 

aggregate, visualize, and analyze live IoT data streams in the ThingSpeak cloud [33].  

In this study, both data captured form sensors in the normal phase and attack phase are moved to 

the ThingSpeak cloud for training the ML models.  

Kali Linux:  Kali Linux is a Debian Linux distribution open source platform which is 

maintained and funded by Offensive Security that has built-in tools for network forensics, 

security auditing, reverse engineering, and penetration testing [34].  

Kali Linux is used in this study to generate attacked sensors’ records on the IoT test bed by 

performing ARP poisoning on the wireless router and the ESP32 NodeMCU IoT module.  

WireShark: WireShark is the world’s foremost and widely-used network protocol analyzer that 

lets you see what’s happening on your network at a microscopic level and it is the de facto 

standard across commercial and non-commercial agencies across the world [37].   

The Arduino IDE: The Arduino IDE is an open-source IDE used for electronic prototyping 

which makes writing code for Embedded Microcontrollers and IoT modules relatively easy.  

Active development of the Arduino software is hosted by GitHub [36]. Arduino IDE is used in 

this study to write program to the NodeMCU ESP IoT module to extract sensor data from the 

sensors and send these data to the ThingSpeak Cloud.  

Weka Explorer: The Weka Knowledge Explorer is an easy-to-use graphical user interface 

software that harnesses the power of the Weka software. Each of the major Weka packages 

Filters, Classifiers, Clusterers, Associations, and Attribute Selection is represented in the 

Explorer along with a Visualization tools which allows datasets and the predictions of Classifiers 

and Clusterers to be visualized in two dimensions [43] 

Figure 10 depicts a graphical representation of the IoT Test Bed used in this study.  In Figure 10, 

the 3 bi-directional blue lines represent 2-way WIRED communication between the ESP32 

NodeMCU Master device, the DHT22 Temperature & Humidity sensor, the MQ2 Gas Sensor, 

and the SW-420 Vibration sensors respectively. The green lines are used to represent a normal or 

non-attack wireless communication between the NodeMCU and the ADSL router and between 

the ADSL router and the ThingSpeak cloud. The red lines between the ESP32 NodeMCU and 

the cloud is used to represent the ARP poisoning, data interception, and modification actions 

performed by the adversarial system before sending these modified sensors’ data to the cloud.  
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Figure 10: Experimental setup of the IoT Test Bed 
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3.4 Dataset Generation  

In order to train the machine learning models and make the models differentiate the IoT 

network’s sensors’ records as ‘Normal’ or ‘Attacked’, both ‘Normal’ dataset and ‘Attacked’ 

dataset was generated using the IoT testbed depicted in Figure 10 of this study.  The detailed 

processes involved in generating both ‘Normal’ datasets and ‘Attacked’ datasets using the IoT 

testbed is briefly described in sections 3.4.1 and 3.4.2 of this study respectively.  

3.4.1 Normal IoT Dataset Generation 

To generate the ‘Normal’ dataset needed to train the ML models used in this study, the first and 

foremost task required was connecting the three sensors i.e. the DHT22 Temperature & 

Humidity sensor, the MQ2 gas sensor, and the SW-420 Gas sensor to the NodeMCU master 

device and write appropriate firmware to instruct the NodeMCU master device to send the 

sensors’ readings to the ThingSpeak cloud.   

According to Figure 10, the 3 bi-directional blue colored arrows are used to illustrate the 

communication between the three sensors and the NodeMCU IoT module which is the master 

device for all three slave sensor devices.  

Once the three sensors collect physical phenomena from the environment they’re immersed in, 

they will forward these environmental changes or Sensors’ readings to the ESP32 NodeMCU 

master device which will perform appropriate raw-data processing on the sensors’ records and 

later forward these sensors’ readings to the ThingSpeak Cloud via the ADSL router wirelessly. 

The Green double-sided arrows of Figure 10, are used to illustrate this step i.e. forwarding 

Sensors’ records from the NodeMCU module to the ThingSpeak Cloud. Hence, generating the 

‘Normal’ dataset used for this study.  
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3.4.1.1 Hardware connection between the NodeMCU and the Sensors 

The NodeMCU IoT module and the three sensors are connected to one another using jumper 

wires to establish communication with each other.   

 

 

Figure 11: The IoT Testbed of This Study  

According to Figure 11, Starting from the Left side of the Picture, the first component is the 

MQ2 Gas sensor, then comes the SW-420 Vibration sensor, and the last component is the 

DHT22 Temperature & Humidity sensor, and the central component is the ESP32 NodeMCU 

IoT module. All three sensors get their power from the NodeMCU Master device which draws 

5Volts DC from a laptop using a Micro USB-B cable. The NodeMCU IoT module has voltage 

regulator that converts the 5V DC to 3.3V DC. The MQ2 Gas Sensor has a total of four pins and 

these are the AO pin for analog output, the DO pin (Digital Output), the GND pin for connecting 

with a common ground, and the VCC pin for connecting to a 3.3V power source from the 

breadboard. The AO pin of the MQ2 sensor is connected with the Analog pin 33 of the 

NodeMCU. The SW-420 Vibration sensor has a total of 3 Pins and these pins are the DO pin 

which is used to send data to the NodeMCU master device, the GND for connecting with a 

common ground, and the VCC pin for connecting to a 3.3V power source from the breadboard. 

The DO pin of the SW-420 vibration sensor is connected to the GPIO pin 26 of the NodeMCU 
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device. Likewise, the DHT22 has a total of three pins and these pins are the VCC, GND, and the 

Data out pin. The VCC pin is used to connect the sensor with a 3.3V power source from the 

bread  board, the GND pin is used to connect with the circuit’s common ground, and the Data out 

pin as the name implies is used to send data to the NodeMCU master device. The Data out pin of 

the DHT22 sensor is connected to the GPIO pin 25 of the NodeMCU master device.  

Once all the hardware connections are established, the firmware or the NodeMCU 

Microcontroller’s software is written using the Arduino IDE. Arduino IDE is used in this study 

to write firmware that instructs the NodeMCU to extract data form the three sensors and send the 

sensors’ data to the ThingSpeak cloud. The version of Arduino IDE used in this study is Version 

1.8.16. The following Arduino libraries were used while writing the firmware; “DHT.h”, 

<WiFi.h>, and the “ThingSpeak.h” Arduino libraries.  

The temperature and humidity data is extracted from the DHT22 sensor and sent to the 

ThingSpeak cloud. Likewise, the amount of Smoke in Parts-Per-Million (SPPM) is extracted 

from the MQ2 sensor and is sent to the cloud. Like other sensed data, the vibration data is 

extracted from the SW-420 sensor and is sent to the ThingSpeak cloud.  

Once data from the three sensor is sent to the ThingSpeak cloud, it is downloaded as a .csv file 

for training the candidate ML models.                                              

 

 

 

 

 

 

 

 

 

 

Figure 12: Sensors’ data in ThingSpeak Server 
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3.4.2 Attacked IoT Dataset Generation 

To generate ‘Attacked’ dataset using the IoT testbed, an adversarial system is built in this study 

to deliberately generate MitM attacks on the IoT test bed using ARP poisoning. To generate 

these ‘Attacked’ dataset, primarily the communicated packets were first visualized in WireShark 

for the purpose of identifying the IP addresses of the NodeMCU and the wireless gateway as 

well as analyzing the flow of traffic in the IoT network. The MiTM attack is achieved by using 

WireShark and Kali Linux which has built-in tools to generate MiTM attacks on the IoT test bed. 

The process of generating ‘Attacked’ dataset in this study is depicted using the two double faced 

Red arrows in Figure10.  

Figure 13 below shows the entire steps used in this study for generating attacks on the IoT test 

bed by the adversarial system.  

 

 

 

 

 

 

 

 

To perform MitM attacks on the IoT test bed, primarily data packets containing the three 

sensors’ readings is analyzed using WireShark. Once the sensors’ data packets are analyzed with 

WireShark, Ettercap is used to perform ARP poisoning on the IoT testbed. Afterwards, the data 

packets are sniffed and later modified with Burp Suite. Lastly, the data packets modified by the 

adversarial system are forwarded to the ThingSpeak server under the disguise of the ESP32 

NodeMCU device.   

The adversarial tools used to execute MitM attack on the IoT test bed are WireShark, Ettercap, 

and Burp Suite. These software are built-in tools found in the Debian Distribution of Kali Linux 

2021.1.  
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Figure 13: Attacked data generation using the Adversarial system [31] 
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A detailed description of the tools and associated methods used for conducting the MitM attack 

is discussed below:  

WireShark: WireShark is a network protocol analyzer which is primarily used for analysis of 

packets in a given network. Analysis can be done in various aspects like time stamps, source and 

destination IP addresses, ARP request & replies, HTTP communications etc.  

In this study, WireShark is used to identify the IP address of all nodes in the IoT test bed and to 

identify the communication protocol used in transferring data between the nodes.  

Ettercap: Ettercap is an open source network security tool found inherently on Kali Linux that is 

used for executing ARP poisoning in a network. Figure 14 below depicts the overall working 

principles of Ettercap to generate MitM attacks using ARP poisoning.  
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Figure 14: ARP poisoning using Ettercap [31] 
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Burp Suite: Burp Suite is an open source security tool used for performing and testing security 

features in web applications. In this study, Burp Suite is used to capture the flow of data between 

the ESP32 NodeMCU and the ThingSpeak server and later to modify the communicated data. 

This is done by configuring the web browser in the adversarial system as a proxy server to route 

packets to Burp suite.  

 

  

 

  

 

 

 

 

In Figure 15, data packets transferred between the ESP NodeMCU and ThingSpeak are routed to 

enter burp suite. Once the data packets are in burp suite, the sensors’ records will be modified, 

and later, the modified sensors’ readings will then be forwarded to the ThingSpeak server as if 

these sensors’ records came directly from the ESP32 NodeMCU client.  

Using steps and Kali Commands depicted form Figure 16 – Figure 26, a total of 510 ‘Attacked’ 

records were generated for this study using an adversarial system. The Adversarial system used 

for this study is a DELL®
 Core-i3 laptop which runs on Kali Linux with a processor speed of 

2.1GHZ and a total installed RAM of 4GB.   
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Figure 15: Sensors’ data interception and modification using BurpSuite [31] 
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The following screen shots depict how the sniffing, ARP poisoning, and data modification was 

done in this study: 

 

Figure 16: IP and MAC addresses of the default router and the Adversarial System 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Host List in the IoT testbed 
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Figure 19: ARP Poisoning Victims 

Figure 18: Adding Hosts to Target1 and Target2 
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Figure 20: Poisoned ARP cache 

Figure 21: Sniffed Sensors’ data 
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Figure 23: Setting up the BurpSuite Proxy listener Address 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22:  Setting Proxy Port and Destination Port for BurpSuite 

Figure 24: Writing Kali Commands to Forward HTTP requests to BurpSuite 
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Figure 26: Altered and Modified Sensors’ Data on ThingSpeak Server 

 

Figure 25: Forwarding BuprSuite Modified Sensors’ readings to ThingSpeak Server 
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Figure 27: Performance metrics for classifiers [31] 

 

3.5 Data Analysis Methods 

In this study, five potential classifier supervised machine learning algorithms are used for 

identifying the best algorithm in detecting MitM attacks in IoT networks based on the IoT 

network’s sensors’ records. The algorithms used in this study are: SVM, Naïve Bayes, Decision-

Trees, KNN, and the Adaboost algorithm. The aforementioned potential algorithms were chosen 

for this study as they are the most widely used classification algorithms and were recommended 

in the literature review section of this study.  

These Five supervised classifier algorithms are compared to one another using standard 

confusion matrix metrics. This is achieved by generating a confusion matrix for each classifier.  

Using the confusion matrix, performance measures of each model is calculated.  Figure 27 shows 

the evaluation metrics of the classifiers considered in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

In this study, TP represents the number of records which have been correctly classified as 

‘Normal’ records, TN represents the number of records correctly classified as ‘Attacked’ records, 

FP represents the number of Misclassified records as ‘Normal’ while in reality, these records 

were ‘Attacked’ records, and FN represents the number of Sensors’ records Misclassified as 

‘Attacked’ while in reality, they were ‘Normal’ Sensor’s records.   
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3.6 Validity and Reliability  

3.6.1 Research Validity 

Research validity is used to determine whether a research truly measures what it was intended to 

measure or how truthful the research results are [40]. To validate this study, the best machine 

learning model will be tested if it accurately differentiates sensors’ records as either ‘Attacked’ 

or ‘Normal’. The validity of this study is measured by testing the accuracy of this study’s best 

machine learning model in predicting whether an IoT network’s Sensor’s record is either 

‘Normal’ or ‘Attacked’.  

3.6.2 Research Reliability  

Research reliability is the extent to which research results are consistent over time [40]. Research 

reliability also checks if the results of a research can be reproduced under a similar methodology, 

and if the result is reproduced, the research is considered to be reliable [40]. To check the 

reliability of this study, each process used in this study is briefly described as well as all 

hardware and software components used in the study are clearly depicted in a pictorial manner. 

In addition the NodeMCU’s firmware written to extract data from the 3 sensors and sending 

these sensors’ records to the ThingSpeak cloud is given at the appendix section of this study.  

3.7 Communication 

According to [41], communication is the last core phase of a design research study. The primary 

goal of communication is communicating the research problem and the designed artifact to other 

researchers and scholars interested in the research area. This study communicates the research 

area to Saint Mary’s University via this research paper. 
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Figure 28: Sample DataSet 

3.8 Dataset Used in this Study  

To compare the 5 supervised machine learning classification algorithms, both ‘Normal’ data and 

‘Attacked’ data were used. In this phase, both the Normal records (Non-Attack data) and 

Attacked sensors’ records were downloaded from the ThingSpeak server separately in a .csv 

format for the sole purpose of training and testing the candidate ML models.   

Using these datasets, five candidate Machine Learning models are generated using the datasets. 

The five candidate algorithms used in this study are: SVM, Naïve Bayes, Decision-Trees, KNN, 

and Adaboost. 

 

  

 

 

 

 

 

 

 

 

 

 

In this study, a total of 1,510 Normal records were generated and downloaded from the 

ThingSpeak server. Besides the ‘Normal’ sensors’ records, additional 510 Attacked and spoofed 

records were downloaded from the ThingSpeak cloud. Of each record, 10 records were cutoff 

form each record in the training and testing phase of the ML algorithms. The reason being; these 

20 sensors’ records are later used as prediction records for the purpose of testing the accuracy of 

the best ML model in “Labeling” these sensors’ records as either ‘Normal’ or ‘Attacked’.    

Hence, a total of 2000 (Two thousand) Original records were used to train and test the five 

candidate algorithms.  
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Figure 29: Labeled Dataset 

3.9 Data Preprocessing and SMOTEing   

Once the sensors’ records were downloaded from the cloud, it was imperative to label sensors’ 

records as ‘Normal’ and ‘Attacked’ for the purpose of training and testing the supervised ML 

algorithms. Hence, each record was classified as either ‘Normal’ or ‘Attacked’ under an attribute 

named “Data Kind”. As their name vividly implies, records labeled ‘Normal’ are records that are 

NOT tampered with by the Adversarial system. On the other hand, records labeled ‘Attacked’ are 

records that are tempered by the Adversarial system in the IoT Testbed. Later before the records 

were fed to the Weka Explorer, each numeric value was changed to nominal using the Weka 

Explorer.  

As clearly stated in section 3.8 of this study, a total of 2,000 records were generated and 

collected from the ThingSpeak cloud. Of the 2,000 records, 1,500 records were ‘Normal’ records 

and the remaining 500 are ‘Attacked’ records. Nevertheless, for the sake of balancing the data 

and increasing the amount of records SMOTE technique was used in this study. SMOTE 

(Synthetic Minority Oversampling Technique) is a statistical technique used for increasing the 

number of records in a given dataset in a synthetic and balanced manner. Hence once the data 

was SMOTEd, a total of 4,000 records were generated. Amongst which 2000 are ‘Normal’ 

records and the remaining 2000 are ‘Attacked’ sensors’ records.   
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3.10 Detail about the Experimentation  

The following sections describe how each experiment is conducted and every step involved in 

the Weka Explorer in a very detailed manner.  

 

Figure 30: Original Dataset Used in this Study with Attributes 

 

As vividly depicted in Figure 30, the dataset is comprised of five attributes; namely 

‘Temperature’, ‘Humidity’, ‘Smoke PPM (Part-Per-Million)’, ‘Vibration’, and ‘Data Kind’. The 

first four attributes are self-explanatory but the last attribute i.e., ‘Data Kind’ is used to label 

sensors’ records as ‘Normal’ and ‘Attacked’.  On the upper left corner of figure 30, it is vividly 

depicted that at this point, the dataset is comprised of just 2,000 records as the data has not been 

SMOTEd yet.  

The next step taken in this study was performing preprocessing on the dataset and balancing the 

dataset.  
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Figure 31: Tuning Parameters to double size of Dataset 

3.11 Preprocessing the data: 

The original data format of the Attacked and Normal data downloaded from the ThingSpeak 

cloud was in a numeric format also the ratio of ‘Normal’ sensors’ records to ‘Attacked’ sensors’ 

records was 3:1. Hence, primarily the Numeric records were converted to their Nominal 

counterparts. The dataset also needed to be resampled to balance the ‘Attacked’ records and the 

‘Normal’ sensors’ records. Figures 31 and 32 do exactly that respectively.   
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Figure 32: Normal and Attacked Sensors’ records after being balanced 

 

After being preprocessed, all numeric values were converted to nominal values using built-in 

tools of the Weka explorer and the ration of ‘Normal’ sensors’ records to ‘Attacked’ sensors’ 

records have now been balanced as depicted in Figure 32.   
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Figure 33: Dataset after being doubled and Balanced 

As depicted on Figures 31, 32, and 33, the dataset has now been converted to nominal, doubled, 

and the ‘Normal’ sensors’ records and ‘Attacked’ sensors’ records have been balanced; hence, 

the ML models will be trained better.  
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Figure 34: Experiment using the SVM Algorithm 

 

3.12 Cross-Validation of the Dataset 

For the sake of creating good machine learning models and preventing both Over-Fitting and 

Under-Fitting, Cross-Validation was used during the training phase of each candidate classifier 

algorithm. And the number of Folds or ‘K’ during the training of all candidate algorithms used 

was the default value of 10.  

3.13 Experiments:  

The following sections show how each candidate classifier algorithms performed in 

differentiating the ‘Normal’ sensors’ records from ‘Attacked’  records with the generated dataset. 

The 5 Candidate algorithms used in this study are: SVM, Naïve Bayes, Decision-Trees, KNN, 

and Adaboost algorithms. Performance of each candidate algorithm are given below.  

3.13.1 Experiment using the SVM Algorithm 

Using the SVM algorithm, the results appearing in Figure 34 has been found.   
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3.13.2 Experiment Using the Naïve Bayes Algorithm 

Using the Naïve Bayes algorithm, the results appearing in Figure 35 has been found.   

 

Figure 35: Experiment Using the Naïve Bayes Algorithm 
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3.13.3 Experiment using the Decision-Trees Algorithm  

Using the Decision-Trees algorithm, the results appearing in Figure 36 has been found.   

 

Figure 36: Experiment using Decision-Trees 
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3.13.4 Experiment using the KNN Algorithm  

Using the KNN algorithm, the results appearing in Figure 37 has been found. While using the 

KNN algorithm, the value 63 was used as the value of K.  

 

Figure 37: Experiment Using the KNN Algorithm 
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3.13.5 Experiment using the Adaboost Algorithm  

Using the Adaboost algorithm, the results appearing in Figure 38 has been found.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.14 Comparison of Experiments 

To compare the results obtained from the five classifier algorithms in differentiating the 

‘Normal’ sensors’ records from ‘Attacked’ records, the accuracy of each algorithm is compiled 

to Table 1 of this study.  

Hence, according to Table 1, of the five potential algorithm used in this study with the given 

dataset. Decision-Trees turned out to be the one that is most accurate and KNN turned out to be 

the one with the lowest accuracy in differentiating ‘Normal’ IoT network’s sensors’ records form 

‘Attacked’ sensors’ records. 

 Figure 38: Experiment using the Adaboost Algorithm 
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Chapter Four 

Demonstration and Evaluation 

 

4.1 Evaluation of Experiments 

According to [41], the demonstration and evaluation phase is used to demonstrate, test, observe, 

and evaluate the extent to which the designed artifact provides solution to the identified research 

problem. In this study the five supervised classifier algorithms are tested using the experimental 

setting listed in Table 1. And each Algorithm is evaluated as per its accuracy in differentiating 

‘Normal’ IoT network’s sensors’ records from ‘Attacked’ records.   

 

Algorithm Accuracy in % 

SVM 93.3 % 

Naïve Bayes 86.2 % 

Decision Trees 95.125 % 

KNN  49.25 % 

Adaboost 50.6 % 

 

Table 1. Evaluation of Algorithms 
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Figure 39: Predicted Outcome using the Decision Tree’s Model 

4.2 Demonstration  

As vividly stated on Table 1, the decision-Tree algorithm is the one with the highest level of 

accuracy hence, the decision-tree’s algorithm’s ML model was used to predict the attribute ‘Data 

Kind’ using the 20 records excluded from being used in training & testing the ML models as 

discussed in section 3.8 of this study. Hence, the 20 excluded sensors’ records were used to test 

the prediction accuracy of the Decision-Tree’s machine learning model. 

To test the accuracy of prediction of the decision-tree’s ML model in accurately predicting the 

‘Data Kind’ attribute of the 20 sensors’ records, these sensors’ records were deliberately 

excluded from the training dataset for this sole purpose. 

 Of the 20 records, the first 10 IoT network’s sensors’ records are of type ‘Normal’ while the 

later are of type ‘Attacked’. Using these records, the Decision tree ML model’s predicted output 

is shown in figure 39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As depicted in figure 39, the decision-tree’s model was able to accurately predict 18 sensors’ 

records based on the provided test records. Of the 20 sensor’s records, the Decision trees ML 

model was able to accurately predict 18 and incorrectly predicted 2 records; one from each 

record kind.  
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                Chapter Five 

Conclusion and Recommendation 

5.1 Conclusion  

This study focuses on building a ML model that detects Man in the Middle attack in IoT 

networks using machine learning techniques based on the IoT network’s sensors’ records. This 

study have discussed the background, application, ubiquity, limitations and use of IoT 

applications in our day to day lives. Because of resource constraints inherent to the IoT 

network’s microcontrollers and vulnerabilities that arise due to their wireless communication 

medium, this study also discussed that it is not wise to use traditional cyber security mechanisms 

like encryption as a counter measure to combat MiTM attacks in these resource constrained IoT 

devices. Hence using their data as input for security analysis together with machine learning 

techniques was chosen as an efficient alternative to detect MitM attacks in the IoT network.  

For this research, for the purpose to acquiring training and testing datasets, an IoT testbed 

comprised on an ESP32 NodeMCU IoT Module, a DHT22 Temperature & Humidity sensor, An 

MQ2 gas sensor, an SW-420 Vibration sensor, and an Adversarial system with Kali Linux was 

used. Once the IoT testbed was developed, both Normal data and Attack data were generated for 

training and testing the machine learning models.   

Using the dataset from the aforementioned IoT testbed five candidate supervised classifier 

algorithms were used to differentiate between ‘Normal’ data and ‘Attacked’ data. Of the five 

algorithms decision-trees came out to be the one with the highest accuracy of 95.125%.  

Hence this study concludes that even if we do not deploy traditional cyber security mechanisms 

like encryption to sustain the integrity of communicated data in these power and resource 

constrained IoT devices, it is still possible to use machine learning techniques in verifying 

whether sensors’ records coming from these IoT networks is either legitimate or tampered with 

using the Man-in-the-Middle attack using ARP cache poisoning.  

This study shows that it is possible to actively attack and modify sensors’ reading in an IoT 

network using ARP poisoning. Hence, unless machine learning models like the one used in this 

study lie in the middle of the IoT network and a central server or database located in a cloud, 

sensors’ readings from such IoT networks should never be used to control actuators embedded in 

Mission-Critical infrastructures as they might cause real-time real-life catastrophes.  
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5.2 Recommendation  

IoT devices are generally designed to be connected to multiple sensors at any given time and in 

this study, only three sensors were used in developing the IoT testbed. These sensors are the 

DHT22 Temperature and Humidity sensor, An MQ2 gas sensor and a SW-420 Vibration sensor. 

These three sensor combined had a total of four sensor outputs namely; Temperature, Humidity, 

Smoke in Parts-Per-Million, and level of vibration.  

Therefore, increasing the number of sensor in the IoT testbed or increasing the number of sensed 

attributes in the IoT testbed is a possible area for future thesis work. Another possible area for 

future work is increasing the amount of sensors’ data and develop a machine learning model 

using artificial neural networks.   
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Appendix:  
/* 

This is the firmware written to extract data from the three sensors and send the sensors' readings 

to the ThingSpeak Server. The three sensors are the DHT22 Temp & Humidity sensor, the MQ2 

Gas sensor, and the SW-420 Vibration sensor.   

   Author: ABEL ASHENAFI TADESSE 

   Date: Jan, 2022 

   belaashu23@gmail.com 

 */ 

#include <Adafruit_Sensor.h> 

#include "DHT.h" 

#include <WiFi.h> 

#include "ThingSpeak.h" 

#define DHTPIN 25 

#define DHTTYPE DHT22 

DHT dht(DHTPIN, DHTTYPE); 

int PwrPin = 2;  

int VibLED = 22;  

int RedLED = 23;  

int MQ2Pin = 33; 

int SW_420Pin = 26;  

const char* ssid = "Put Your SSID HERE";  

const char* password = "Put your SSID’s Password Here";  

WiFiClient client;  

unsigned long myChannelNumber = 1;  

const char* myWriteAPIKey = "Put Your ThingSpeak Server’s Write API Key Here";  
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unsigned long lastTime = 0;  

unsigned long timerDelay = 3000;  

int Temperature;  

int Humidity;  

void BlinkLED (void) 

{ 

    for (int i = 0; i < 5; i++) 

    { 

        digitalWrite (PwrPin, HIGH); 

        delay (50); 

        digitalWrite (PwrPin, LOW); 

        delay (50); 

    } 

} 

long SensedVibration () 

{ 

    long Measurement = pulseIn (SW_420Pin, HIGH); 

    return Measurement;  

} 

long SmokeValuePPM () 

{ 

    long Smoke = analogRead (MQ2Pin); 

    Smoke *= 0.20125; 

    return (Smoke); 

} 
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void setup()  

{ 

    pinMode (PwrPin, OUTPUT); 

    digitalWrite (PwrPin, LOW); 

    pinMode (RedLED, OUTPUT); 

    digitalWrite (RedLED, HIGH);  

    pinMode (MQ2Pin, INPUT);  

    pinMode (SW_420Pin, INPUT); 

    Serial.begin (115200); 

    Serial.print ("Send Sensors' Data! \n"); 

    delay (1500); 

    if (WiFi.status () != WL_CONNECTED) 

    { 

        Serial.print ("Attempting to Connect"); 

        while (WiFi.status () != WL_CONNECTED) 

        { 

            WiFi.begin (ssid, password); 

            delay (5000); 

        } 

        Serial.println ("Connected and the "); 

        Serial.print ("IP Address is:  " ); 

        Serial.print (WiFi.localIP ()); 

        Serial.print ("\n"); Serial.print ("\n"); Serial.print ("\n"); 

        delay (3000); 

    } 
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    dht.begin ();  

    WiFi.mode (WIFI_STA); 

    ThingSpeak.begin (client); 

} 

void loop()  

{   

    BlinkLED ();  

    if ((millis () - lastTime) > timerDelay) 

    { 

        if (WiFi.status () != WL_CONNECTED) 

        { 

            Serial.print ("Attempting to Connect"); 

            while (WiFi.status () != WL_CONNECTED) 

            { 

                WiFi.begin (ssid, password); 

                delay (5000); 

            } 

            Serial.println ("\nConnected"); 

        } 

        int Temperature = dht.readTemperature ();  

        int Humidity = dht.readHumidity ();  

        if (isnan(Temperature) || isnan(Humidity))  

        { 

            Serial.println(("Failed to read from DHT sensor!")); 

            return;} 



 63 
 

        long SmokeValue = SmokeValuePPM (); 

        long Vibration = SensedVibration (); 

        Serial.print ("Temperature: "); 

        Serial.print (Temperature); 

        Serial.print (" °C"); 

        Serial.print ("  Humidity: "); 

        Serial.print (Humidity); 

        Serial.print (" % \n");    

        Serial.print ("Smoke in Part-Per-Million: "); 

        Serial.print (SmokeValue); 

        Serial.print (" PPM \n");  

        Serial.print ("Vibraion: "); 

        Serial.print (Vibration); 

        ThingSpeak.setField (1, Temperature); 

        ThingSpeak.setField (2, Humidity); 

        ThingSpeak.setField (3, SmokeValue); 

        ThingSpeak.setField (4, Vibration); 

 

        int RNo = ThingSpeak.writeFields (myChannelNumber, myWriteAPIKey); 

        if (RNo == 200) 

        { 

            Serial.println ("Channel Update Sucessful"); } 

        else {Serial.println("Problem updating channel. HTTP error code " + String(RNo)); 

        }lastTime = millis ();  

    }} 


