

ANOMALY- BASED INTRUSION DETECTION USING

GENERATIVE ADVERSERIAL NETWORKS

A Thesis Presented

By
KALEAB AYELE FKADIE

The Faculty of Informatics
of

St. Mary’s University
In Partial Fulfillment of the Requirements

for the Degree of Master of Science

in

Computer Science

February, 2021

ii

ACCEPTANCE

ANOMALY- BASED INTRUSION DETECTION USING
GENERATIVE ADVERSERIAL NETWORKS

By
KALEAB AYELE FKADIE

Accepted by the Faculty of Informatics, St. Mary’s University, in partial

fulfillment of the requirements for the degree of Master of Science in
Computer Science

Thesis Examination Committee:

__
Internal Examiner

External Examiner

__
Dean, Faculty of Informatics

February 2021

iii

DECLARATION
I, the undersigned, declare that this thesis work is my original work, has not been

presented for a degree in this or any other universities, and all sources of materials used
for the thesis work have been duly acknowledged.

Kaleab Ayele Fkadie

Name of Student

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

Asrat Mulatu (PhD)
Advisor

Signature

Addis Ababa

Ethiopia

February 2021

iv

Acknowledgments
First and foremost, praises and thanks to God, for his countless blessings throughout my life and
this research. It has been a challenging journey and I would like to express my deep and sincere
gratitude to my research advisor, Dr. Asrat Mulatu for his valuable time, guidance and comments
which enabled me to gain good research experience.
I would also like to thank Dr.Michael Melese who gave me additional information on data
processing and hyperparameter optimization for my research. This whole research would not be
successful without his support.
I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating
and preparing me for my future. They have been my source of strength next to God. Last but not
least, I would like to thank my friends and colleagues.

v

Table of Contents
Acknowledgments .. iv
List of Acronyms ... vii
List of Figures .. viii
List of Tables ... ix
Abstract ... x
CHAPTER ONE ..1

INTRODUCTION ... 1
1.1. Background of the study ... 1
1.2. Motivation for Study ... 3
1.3. Statement of the Problem .. 4
1.4. Objectives .. 5
1.4.1. General Objective ... 5
1.4.2. Specific Objectives .. 5
1.5. Scope ... 6
1.6. Organization of the Thesis .. 6

CHAPTER TWO ...7
LITRATURE REVIEW ... 7

2.1. Overview of Intrusion Detection System .. 7
2.2. Anomaly Intrusion Detection .. 13
2.3. Deep Learning in Intrusion Detection ... 16
2.3.1. Generative Adversarial Networks ... 19
2.3.2. Wasserstein Generative Adversarial Networks .. 22
2.4. Overfitting and Underfitting ... 22
2.5. Hyperparameter Tuning .. 23
2.6. Related Works ... 24

CHAPTER THREE ... 29
METHODOLOGY .. 29

3.1. Overview ... 29
3.2. Research Design Approach ... 29
3.3. Data Preparation ... 30

vi

3.4. Model Architecture ... 36
3.5. Data Modeling ... 39
3.6. Evaluation Metrics .. 42

CHAPTER FOUR .. 45
EXPERIMENT ... 45

4.1. Overview ... 45
4.2. Experimental Setup ... 45
4.2.1. Tools Used ... 45
4.2.2. Implementation of the Components .. 47
4.2. Experimental Scenarios ... 48

CHAPTER FIVE .. 49
ANALYSIS AND RESULT .. 49

5.1. Analysis of Grid Search Result ... 49
5.2. Performance Evaluation .. 49
5.3. Comparison of Classification Models .. 50

CHAPTER SIX .. 52
CONCLUSION AND FUTURE WORK ... 52

6.1. Conclusion .. 52
6.2. Future Work .. 52

Reference .. 54
APPENDICES .. 60

Appendix A: Hyperparameter Optimization using Grid Search from Keras Framework 60
Appendix B: Discriminator and Generator Model on GAN ... 61

vii

List of Acronyms

AIDS Anomaly Intrusion Detection System
ANIDS Anomaly Network Intrusion Detection System
AUC
CPU
DNN
DOS

System Area under ROC curve
Central Processing Unit
Deep Neural Network
Denial of Service

GAN
GPU

Generative Adversarial Network
Graphical Processing Unit

HIDS Host-Based Intrusion Detection System
IDS Intrusion Detection System

 JSD Jensen-Shannon divergence
KDD Knowledge Discovery Data
ML Machine learning
NIDS Network-Based Intrusion Detection System
NSL-KDD Network Security Learning Knowledge Discovery Dataset
PCA
R2L
RAM

Principal Component Analysis
Remote to Local
Random Access Memory

RBM Restricted Boltzmann Machine
ROC Receiver Operating Characteristics
SFPR System False Positive Rate
SIDS Signature Intrusion Detection System
SM Soft-Max Regression
STL Self-taught Learning
TPR
U2R

True Positive Rate
User to Root

WGAN

Wasserstein Generative Adversarial Network

viii

List of Figures
Figure 2.1: Sequence of execution of signature detection modules adopted from [15] 9
Figure 2.2: Sequence of execution of modules in anomaly detection adopted from [15] 10
Figure 2.3: Classifications of IDS adopted from [4]... 12
Figure 2.4: Taxonomy of machine learning algorithms adopted from [4] 16
Figure 2.5: Architecture of a generative adversarial network adopted from [34] 21
Figure 3.1: Data processing .. 35
Figure 3.2: Baseline training ... 41
Figure 3.3: Testing .. 42
Figure 4.1: Implementation Components on GAN and WGAN ... 48

ix

List of Tables
Table 2.1: Security applications of adversarial ML .. 28
Table 3.1: Records distribution of training set and testing set in NSL-KDD dataset 31
Table 3.2: NSL-KDD features and value types adopted from [10] .. 33
Table 3.3: Mapping of attack class with attack type ... 33
Table 3.4: Hyperparameters selected for tuning and default values ... 37
Table 3.5: Confusion Matrix ... 43
Table 5.1: Optimal hyperparameter and default parameters of deep learning algorithms 49
Table 5.2 : Model classifiers with default parameters .. 50
Table 5.3: Model classifiers with after hyperparameter tuned ... 50

x

Abstract
Intrusion detection system (IDS) has become vital role in the field of IT Security due to cyber
security safety in all human and machine pass through day to day activities. Intrusion detection
methods based on the signature-based techniques have been used widely with limitation of
identify new emerging threats. However, the progress of technology and the shortcomings of the
intrusion detection system are influenced to upgrade IDS based on signature. Anomaly-based
IDS are to establish a normal behavior profile and then define abnormal behaviors by their
degree of abnormality from the normal profile. One of the techniques is used algorithms that
support Deep Learning. Generative Adversarial Networks (GANs) have been widely studied and
applied in anomaly detection within 6 years from first introduced in 2014 due to their advanced
advantage in generating and learning higher-dimensional data which is had high number of
features such as images, sounds and text. On this paper we had use current existing GAN and
WGAN one of GAN variants for anomaly intrusion detection using NSL KDD dataset. On the
training phase we have used pre-processed data fed to algorithms to train with default parameters
that the classification model is build. On the validation phase we have considered of loss and
accuracy of each batch of data training through with optimal parameters that gather from grid
search over cross validation. Finally, the selected trained model is used to predict the test dataset.
The evaluation result showed that the accuracy in classifying normal and attack. The results had
shown on WGAN with accuracy of 89% prediction with default parameter and high prediction
that performing with accuracy of 95.7% with optimized parameter.

Keywords: Deep Learning, Intrusion Detection System, Anomaly Detection, Neural Network,
NSL KDD Dataset, Generative Adversarial Networks, Wasserstein Generative Adversarial
Networks.

1

CHAPTER ONE
INTRODUCTION

1.1. Background of the study
Information Security is a key concern in the modern information process due to expanding
computer technology with the threat it faces – loss of stored, processes and transmit information
through the network. In the 90’s, the beginning of an Internet era is providing a huge
transformation on information technology, because of the data transmission and communication
channel to become more easily usable [1]. It was a fixed network of computers that allowed the
first millions of Internet users to communicate via e-mail. However, with the arrival of the
Internet, personal computers and computer networks vulnerability increases to various kinds of
attacks.
Heavy reliance on the Internet and worldwide connectivity has greatly increased the potential
damage that can be inflicted by remote attacks launched over the Internet. And results of using
Internet become with threat on information hijack and lose stored data. Intruders make use of
the security breaches present in the system or network to attack it [2]. Intrusion is a
purposefully illegal attempt to access information, manipulate information or render a
system untrustworthy or inoperative.
Computer and network security is become a major concern in our daily life experience on the
Internet. According to Kaspersky 2019 statistical reporting period, network attacks continued to
be one of the most common types of attacks [3]. Kaspersky solutions repelled 975,491,360
attacks launched from online resources located all over the world. So, there should be mitigation
for this threat. One of the major goals of network security is to detect an attack on network
traffic. There are different ways to prevent and protect organizations network resources due to
confidentiality, availability and integrity. Some of them are installing anti-virus software,
firewalls, cryptography, intrusion detection system, and authentication and authorization. Among
them, intrusion detection system (IDS) has been considered to be one of the most promising
methods for defending complex and dynamic intrusion behaviors.

2

An intrusion detection system (IDS) is an active process or device that analyzes system and
network activity for unauthorized and unauthenticated activity [4]. This is typically
accomplished by automatically collecting information from a variety of systems and network
sources, and then analyzing the information for possible security problems. There is no 100%
guarantee to protect any data on the network which connected to Internet. Rather it is
recommended to use different ways as an optional to mitigate any threat according to IEEE x.805
eight security dimensions map to the security threats. As stated on the paper [5], the eight
security dimensions are access control, authentication, non-repudiation, data confidentiality,
communication security, data integrity, availability and privacy. In this paper, we have used to
mitigate through communication security and access control based on the network traffic
transaction records with in network traffic dataset.
Intrusion detection systems are identified the attack in to two ways according to detecting
method which are Signature-based and Anomaly-based. Signature-based detection [4] process
matches the signatures of samples using a signature database. The main problem in constructing
signature detection systems is to design efficient signatures. Anomaly-based IDS are to establish
a normal behavior profile and then define abnormal behaviors by their degree of deviation from
the normal profile [6]. It has been used mostly to detect unknown attacks.
Nowadays most researchers in the area of network security focus to work on anomaly detection.
Machine learning algorithms have been widely used in the improvement on IDS due to their high
efficiency, flexibility and deploy ability. Currently, IDS based on machine learning techniques
have become the mainstream. Rather than building a large signature database and the world
become a data driven in every sector of government and private industries.
However, due to the huge quantification and complexity of malicious attacks, some
shortcomings of traditional machine learning algorithms have been improved, such as the
emphasis on processing low-dimensional data and the lack of response to high-dimensional data,
and the dependence on manual features selection
Deep learning is branch of machine learning which highly powerful and effective in
development of Intrusion Detection. The manual feature selection process simplify by deep
learning and it has become a practical solution and implementation for machine learning tasks

3

that process a high-dimensional data which has high number of attributes can exceed the number
of observations. In recent years, the application of deep learning algorithms in the field of
intrusion detection has developed rapidly. Since Generative Adversarial Networks published
paper in 2014 [7], GAN have shown their advanced advantage in generating higher-dimensional
data such as images, sounds and text. GAN is mostly used in the field of Digital Image
Processing and Computer Vision. However, it also can be used in intrusion detection. GAN is a
combination of two neural networks which are Generator and Discriminator. A Generator alters
malicious version of the input it was originally profile given and sends it to be classified by the
Discriminator. The objective of the Generator is to bypass the IDS, and the objective of the
Discriminator is to imitate the IDS on classifying inputs (normal or attack) and be responsible for
response to the Generator. With this combination, both models are competing to win each other
through adversarial. The attack is identified on the Discriminator Model.
In this research, to overcome the problems in identify unknown attacks using a set of selected
deep learning algorithms are evaluated on NSL-KDD data set. Their performance are measured
based on their detection rate and evaluation metrics. There are four major attack categories found
on NSL-KDD datasets: Probe (information gathering), DoS (denial of service), and U2R (user to
root) and R2L (remote to local). These four attacks have distinct unique execution dynamics and
signatures. However, these four major attacks grouped into one attack category to identify from
normal network traffic which is one of the drives for this research to investigate if certain
detection algorithms are likely to demonstrate superior performance for a given network traffic
records.

1.2. Motivation for Study
There are many intrusion detection techniques that are proposed by different researchers, some
of which are reviewed in the literature review section like signature-based detection, anomaly-
based host based, and network-based. Most Intrusion detection systems are designed and
developed on signature-based approach which examines only known attacks. The detection
process matches the signatures of samples using a signature database. It did not handle unknown
attacks and weakness of currently available network security tools with regard to detecting
intrusion. So it has to find a solution for continuous updating of the information to get all known

4

and unknown attacks in a network. The initiation takes place from information security issue
through developing a secure way on an organization network through continuous study on the
data from threats previously occurred and try to learn a machine to protect itself from new type
threats. Thus, on this study a network-based approach with unidentified threats to determine and
detect intrusions using a deep learning technique to learn feature from previously attacks and
minimize the unknown attacks on the network.

1.3. Statement of the Problem
Intrusion Detection is one way of network monitoring mechanism to prevent the resources before
further damage occurs [4]. IDS are design mostly on signature-based for known attacks, also
there are depend on anomaly-based IDS for new threats. Detecting attacks masked by evasion
techniques is a challenge for both Signature IDS and Anomaly IDS [8]. These techniques are
malicious activities to avoid the detection of IDS. The ability of evasion techniques would be
determined by the ability of IDS to bring back the original signature of the attacks or create new
signatures to cover the modification of the attacks.

Robustness of IDS to various evasion techniques still needs further investigation. According to
[4] improvements in machine learning algorithms are the main means to enhance the detection
effect using different feature selection methods are intended to reduce the number of input
variables to those that are believed to be most useful to a model in order to predict the target
variable.

Deep learning models directly learn feature representations from the original data, such as
images and texts, without requiring manual feature engineering [9]. Thus, deep learning methods
can execute in an end-to-end manner. For large datasets, deep learning methods have a
significant advantage over shallow models. As in paper [9] stated that the ANIDS are developed
as classifiers to differentiate the normal traffic from the anomalous traffic.
One of the activities is accompanied feature selection task is to extract a subset of relevant
features from the traffic dataset to enhance classification results [8]. Feature selection helps in
the elimination of the possibility of incorrect training through the removal of redundant features
and noises.

5

To improve the strength of IDSs, adversarial learning becomes a novel approach [4]. Adversarial
Learning can be used for attacks against IDS. Meanwhile, it is also a novel way to improve
detection accuracy of IDS. The benefits of AIDS are strong generalizability and the ability to
recognize unknown attacks. However it is vulnerable for high false alarm rate and an inability to
provide possible reasons for an anomaly. So on this study by using generative adversarial
learning can be comparison the effect on the detection efficiency based on the balanced and
optimized features distributed on dataset NSL-KDD and measure the effectiveness of Generative
Adversarial Networks (GAN) and its variance Wasserstein Generative Adversarial Networks
(WGAN) using the IDS metrics to show the feasibility and comparison results [10].
There are different ANIDS challenges raised and solved in different studies. In this study, we
will response the following:

1. Which factors are influence the performance of GAN and WGAN on ANIDS?
2. How can we increase the detection rate of Anomaly-based Intrusion Detection

systems to detect unknown attacks?
3. Compare the efficiency of GAN and its variance WGAN on ANIDS Model.

1.4. Objectives
1.4.1.General Objective
The main objective of the study will be to design and implement a model for classification based
on the Anomaly Network Intrusion Detection for network attacks.

1.4.2.Specific Objectives
The specific objectives of the study will be:
 Conduct a detail literature review to understand for deep learning in anomaly

intrusion detection .
 To study different types of intrusion detection approaches.
 To design Anomaly-based Network Intrusion Detection using the selected algorithms.
 To conduct experiments to test and evaluate the performance of the model
 To perform an analysis on the optimal classification model based on the evaluation

results.
 To identify factors that has influence on the models.

6

1.5. Scope
In this thesis work, conducted to design and implement a model for classification of network
traffic into normal and attack based on the anomaly approach using deep learning techniques. It
focuses on identifying possible network attacks, measuring the model efficiency and classifies
the anomaly and normal profiles, not to prevent them. The study is designed to model and
increase detection rate with examine unknown attacks. However, in this study host based
intrusion detection is not included.
One of the limitations of this research work is that the dataset is used from Canadian Institute for
Cyber security organization, and cannot directly implement the trained model to specific
organization network. Which is due to the network infrastructure and configuration of one
organization is different from the others. Also, the procedure for grid search with cross validation
is needed long computational time.

1.6. Organization of the Thesis
The following is an overview of the structure of this thesis. First chapter gives an introduction to
this research giving statement of the problem, thesis objectives, motivation and the scope of this
work. This is followed by second chapter introduces the conceptual information on intrusion
detection and related works in the field of anomaly intrusion detection using different detection
techniques. It also discusses how intrusion detection systems are classified. The third chapter
introduces the research methods, algorithms and dataset to use in this paper. The fourth chapter
introduces the research experiment and evaluation which explores the study done including
evaluation setup, criteria and performance analysis for both of the selected algorithms. And the
fifth chapter introduces the discussion and concluding remarks on our study, present ideas for
improvements and recommendations for future research are forwarded.

7

CHAPTER TWO
LITRATURE REVIEW

This Chapter is mainly concern on review literatures and basic concepts on IDS which are highly
focus on anomaly detection using deep machine learning techniques and Generative Adversarial
Network (GAN).

2.1. Overview of Intrusion Detection System
Network attacks are defined as a set of malicious activities to disrupt, deny, degrade or destroy
information and service resident in computer networks [11]. A network attack is executed
through the data stream on networks and aims to compromise the integrity, confidentiality or
availability of computer network systems. Examples of computer attacks include viruses attached
to emails, probing of a system to collect information, Internet worms, unauthorized usage of a
system, and denial of-service by abusing a feature of a system, or exploiting a bug in software to
modify system data [2].
Many attack recognition systems have been developed and are in use widely which
inspect network data for any variation from the ordinary action of a system or user of the system
[2]. Hackers have developed several mechanisms ranging from simple to sophisticated
techniques to perpetuating their criminal acts.
In addition, the majority of attack, leverage on the loopholes found in some of the hardware and
software components of the interconnected network systems [12]. Some might also look for an
already recognized behavior of an attack within the data. These systems are termed as Intrusion
Detection Systems (IDS) and use different techniques varying from statistical methods to
machine learning algorithms. IDS are an important tool for network system to detect security
holes in the network. Before further investigation, we will define important and usually used
terms related with IDS from authors in [13], [14].
Network Intrusion refers to any unauthorized activity on a digital network. Network intrusions
often involve stealing valuable network resources and almost always jeopardize the security of
networks and their data.

8

Intruder: it can be any person, system or program that tries to or is successful to break into the
network and perform illegal actions. The intruders may be an entity from outside or may be an
inside user of the system trying to access unauthorized information.
Intrusion Detection: is the process of identifying and (possibly) responding to malicious
activities targeted at computing and network resources by the observation of the
information available about the state of the system and monitoring the user activities. Detection
of break-ins or attempts by intruders to gain unauthorized access of the system is intrusion
detection.
Anomaly intrusion detection (AID): is to determine if an activity is unusual enough to suspect
an intrusion. A basic assumption of anomaly detection is that attacks differ from normal
behavior. A normal behavior is the one used in the network which has valid access. Machine
learning is used to adapt the environment however the one that tries to access outside from the
normal or allowed is considered as malicious without changing the environment.
Intrusion detection system (IDS) is a kind of security management system for computers
systems and networks. An Intrusion Detection System gathers the information from certain areas
within a network or computers and analyzes it to find potential security breaches.
There are two types of IDS classification methods [4]: detection-based method and data source-
based methods. Depending on how the intrusion is detected, there are two different types of IDS:
signature-based (misuse) IDS (SIDS) and anomaly detection based IDS (ADIDS). SIDS [8]is
based on pattern matching techniques to find a known attack; these are also known as
Knowledge-based Detection or Misuse Detection.
 In SIDS [8], matching methods are used to find a previous intrusion. In other words, when an
intrusion signature matches with the signature of a previous intrusion that already exists in the
signature database, an alarm signal is triggered. For SIDS, host’s logs are inspected to find
sequences of commands or actions which have previously been identified as malware. The main
problem in constructing misuse detection systems is to design efficient signatures. The
advantages of misuse detection are that it has a low false alarm rate and it reports attack types as
well as possible reasons in detail; the disadvantages are that it has a high missed alarm rate, lacks
the ability to detect unknown attacks, and requires maintaining a huge signature database.

9

Figure 2.1 shows how a typical misuse or signature detection system works [15]. These detection
systems execute algorithms that attempt to match learned patterns or signatures from past attacks
with the current activities in a network in order to detect any possible attack or malicious
activities.

Figure 2.1: Sequence of execution of signature detection modules adopted from [15]

The data is gathered from network and host audit logs, packets transmitting over the network,
and windows log and registry. Data pre-processing [15] is a critical step that prepares the raw
data for learning patterns. It is involved normalizing or ordering of data, the reduction of noise
by eliminating outliers, and finally selecting and extracting features. After the data pre-
processing, machine learning system is deployed to build a learning model and extract rules
using prior knowledge of the execution of malicious programs, network traffic data, and
vulnerabilities in network infrastructure. The model is now ready for signature and misuse
detection. The learned classification model is applied to the incoming network traffic for
signature detection. If any part of the network traffic is found to be similar to attack patterns

10

learned by the model, then an alarm is raised and the traffic is further analyzed for
identifying whether it is really an attack or a false alarm.
The design idea behind anomaly detection IDS [4] is to establish a normal behavior profile and
then define abnormal behaviors by their degree of deviation from the normal profile. Thus, the
key to designing an anomaly detection system is to clearly define a normal profile. The benefits
of anomaly detection are strong generalizability, ability to identify zero-day attacks and the
ability to recognize unknown attacks due to the fact that recognizing the abnormal user activity
does not rely on a signature database, while its shortcomings are a high false alarm rate and an
inability to provide possible reasons for an abnormality [4].

Figure 2.2: Sequence of execution of modules in anomaly detection adopted from [15]

In Figure 2.2 explained that anomaly detection has five steps [15]. As we have known a machine
learning phases are involved, like data gather from network, host or both. Also data processing
includes the volume of data is reduced as this step includes feature selection, feature extraction,
and finally dimensionality reduction processes.

11

The normal profiling learning step [4] is learning a normal behavior from the data. At anomaly
detection is conducted identification of abnormal behaviors using dissimilarity detection
techniques. Finally, it responds to classified normal from abnormal profile and responds the alert.
Intrusion Detection Systems [8] are security systems that collect information from various types
of system and network sources, and analyze these data in an attempt to detect activity
that may constitute an attack or intrusion on the system. Usually, the attacks target not only one
individual computer but also aim for a group of hosts. As a result, some intrusions might show
an anomalous behavior at the network layer, while others could exhibit anomalous behaviors at
the application layer.
IDS is classified based on data source-based methods depending upon the origin of data source
or location in a network, such as network packets, payload, operating system logs ,firewall logs
and network sensors as shown in Figure 2.3. There are two types IDS as host based IDS and
Network-based. Host-based IDS (HIDS) is an installed software package which monitors a
single host for suspicious activity by analyzing events occurring within that host [16].

12

Figure 2.3: Classifications of IDS adopted from [4]

HIDS is usually software running on the protected host, and therefore they must be installed on
each individual machine and requires configuration specific to that operating system. Some of
the advantages are monitor all users’ activities, identifying attacks that originate from inside the
host and analyze the decrypted traffic to find attack signature thus giving them the ability to
monitor encrypted traffic. In other hand, the disadvantages are that host-based IDSs occupy host
resources as a major storage space and extra computing power from the host where they reside.

13

They can be ineffective during the denial of service attacks. Also they are dependent on the
reliability of the host, and are unable to detect network attacks.
Network –based IDS (NIDS) [17] is monitor network traffic data using a set of sensors attached
to the network to capture any malicious activities. Networks security problems can vary widely
and can affect different security requirements including authentication, integrity,
authorization, and availability. A majority of network-based IDSs are independent of the
operating system (OS); thus, they can be applied in different OS environments [4].
Furthermore, network-based IDSs are able to detect specific types of protocol and network
attacks. There are advantages of NIDS; monitors only read each packet pass through a network
segment without taking computing resource from host. Also they can be implemented easily on
part of a network and independent from operating system. However, there are disadvantages of
NIDS. Due to monitoring of every packet that passed through the segment, they have difficulty
keeping up with systems especial systems with heavy traffic. On this study, we emphasize on
anomaly detection on network-based intrusion detection which is discussed in the next sub-
section.

2.2. Anomaly Intrusion Detection
Network inspired by nervous system has become an interesting tool in the applications of
Intrusion Detection Systems. It supports an ideal specification of an Intrusion Detection
System and is a solution to the problems of traditional IDSs [18] Anomaly-based detectors
attempt to estimate the ‘‘normal’’ behavior of the system to be protected, and generate an
anomaly alarm whenever the deviation between a given observation at an instant and the normal
behavior exceeds a predefined threshold [19]. These profiles are constructed from historical data
collected during normal operation.
The detectors collect data from the events and use a variety of measures to determine
when the monitored activity deviates from normal activity [14]. However, due to the
assumptions underlying anomaly detection mechanisms, their false alarm rates are in general
very high. Specifically, the main reasons for this limitation includes the user’s normal
behavior model is based on data collected over a period of normal operations; intrusive
activities missed during this period are likely to be considered as normal behaviors. Also

14

anomaly detection techniques can hardly detect stealthy attacks because these kinds of attacks
are usually hidden in large number of instances of normal behaviors.
Moreover, the types of parameters used as inputs of normal models are usually decided by
security experts. Any mistake occurring during the process of defining these parameters will
increase the false alarm rate and decrease the effectiveness of the anomaly detection system. As
a result, the design of the detection methods and the selection of the system or network features
to be monitored are two of the main open issues in anomaly detection [14].
ADIDS [8] methods can be categorized into three main groups: Statistics-based, knowledge
based and machine learning-based. ADIDS is established on the statistical analysis , it detects
attacks based on abnormalities in the pattern with respect to the normal pattern of data on the
network, only selects the normal states from the pattern as usual activity and the rest as attack on
the network.
Statistical-based techniques use statistical properties such as mean and variance on normal
transaction to build the normal profile [20]. It detects possible system intrusions by identifying
departures from historically established normal behavior. The statistical tests are employed to
determine whether the observed transaction deviates from the normal profile. The IDS assigns a
score to the transactions whose profile differs from the normal. If the score reaches the threshold,
alarm is raised. The threshold value is set based on count of events that occur over a period of
time.
Knowledge-based techniques are used to extract the knowledge from the specific attacks and
system vulnerabilities. This knowledge can be further used to identify the intrusions or attacks
happening in the network or system. They generate alarm as soon as an attack is detected. They
can be used for both misuse and anomaly-based detection [8].
Machine learning (ML) strategies emphasize on building a framework that enhances its
execution based on previous results, it can change their execution strategy based on recently
acquired data. ML model does not learn through a database of labeled attacks with known
patterns and signatures but rather uses features of network traffic flow such as source address,
destination address, bytes per flow, source port, destination port, and much more to learn the
general feature set of normal traffic [21] . These features are monitored over a period of time and

15

are used as the dataset to train the ML model. Using machine learning algorithms can effectively
improve the accuracy of detection and reduce the requirement of human knowledge.
Machine learning is divided into shallow learning and deep learning. Shallow learning relies on a
field expert to identify the relevant features for evaluation. Thus, among the features that are in a
flow, the field expert must select the features they believe are the most relevant and use that to
train the ML model. In addition, Principal Component Analysis (PCA) can be used as feature
selection method. On the other hand, Deep learning relies on the model selecting the features it
estimates to be the most important ones for determining the effectiveness of the model without
intervention of expert knowledge. The common machine learning algorithms used in IDSs are
shown in Figure 2.4.

16

Figure 2.4: Taxonomy of machine learning algorithms adopted from [4]

2.3. Deep Learning in Intrusion Detection
In recent years, security researchers are more focus on the application of deep learning in the
different areas. IDS are one of application area in order to strength security aspects on the
networks and systems. Neural networks [19] have been adopted in the field of anomaly intrusion
detection, mainly because of their flexibility and adaptability to environmental changes. This
detection approach has been employed to create user profiles, to predict the next command from
a sequence of previous ones, to identify the intrusive behavior of traffic patterns.

17

The major variance between shallow learning and deep learning is that deep learning design has
multiple hidden layers. Feature selection can be performed by the first few layers of deep neural
network, which enables deep learning to extract advanced features so that high-level concepts
can be learned, which makes up for the defects of machine learning algorithm. In addition,
depending on how the techniques can be used, deep learning can be categorized into: (1) deep
networks for unsupervised learning (2) deep networks for supervised learning.
Supervised learning [14] is the task of gathering a function from labeled training data. The
training data consist of a set of training examples. The learner receives those sets of labeled
examples as training data and makes predictions for all unseen points. In supervised learning,
each example is a pair consisting of an input object (typically a vector) and a desired output
value (also called the supervisory signal). A supervised learning algorithm analyzes the training
data and produces an inferred function, which can be used for mapping new examples. An
optimal scenario will allow for the algorithm to correctly determine the class labels for unseen
instances. This requires the learning algorithm to generalize from the training data to unseen
situations in a "reasonable" way.
Supervised learning problems are commonly associated with "regression" and "classification"
problems. In a regression problem, we are trying to predict results within a continuous output,
meaning that we are trying to map input variables to some continuous function. In a
classification problem, we are instead trying to predict results in a discrete output. In other
words, we are trying to map input variables into discrete categories.
Supervised learning is the most common technique for training neural networks and
decision trees. Both of these techniques are highly dependent on the information given by
the predetermined classifications. In the case of neural networks, the classification is used to
determine the error of the network and then adjust the network to minimize it.
In addition, IDS based on supervised learning can use feature selection to exclude unnecessary
features in the training data, and use the remaining selected features to train the classifier to learn
the internal relationship between input data and labeled output values [8]. The supervised
machine learning algorithms that have been applied to intrusion detection using deep learning

18

including: Deep Convolutional Neural Network (DCNN) [22] Convolutional Neural Network
(CNN) [23], Recurrent Neural Network (RNN) [24] and Deep Belief Network (DBN) [25].
A supervised learning approach usually consists of two stages [8], namely training and testing. In
the training stage, relevant features and classes are identified and then the algorithm learns from
these data samples. In supervised learning IDS, each record is a pair, containing a network or
host data source and an associated output value namely intrusion or normal. Next, feature
selection can be applied for eliminating unnecessary features. Using the training data for selected
features, a supervised learning technique is then used to train a classifier to learn the inherent
relationship that exists between the input data and the labeled output value. In the testing stage,
the trained model is used to classify the unknown data into intrusion or normal class. The
resultant classifier then becomes a model which, given a set of feature values, predicts the class
to which the input data might belong.
Unsupervised learning is a form of machine learning technique used to obtain interesting
information from input datasets without class labels. [8] It creates joint density models from a set
of random variables without class labels and obtains useful information from them. The label of
the output data in supervised learning IDS is given and used to train the model to handle the
unknown data, while in unsupervised learning IDS the label is unknown, and instead of that, the
data is automatically divided into different classes during the learning process. Normal records
will form sizable clusters, and the records in other small clusters will be labeled as malicious
attack data, because the performance of malicious records and normal records is not the same, so
they belong to different clusters.
The main downside of supervised learning in deep learning intrusion detection is the need of
tagging the training data, which makes the process costly, time consuming and challenging to
find new attacks. In other hand, unsupervised learning addresses these matters solve by training
based on unlabeled datasets as only input data is given, finds all kind of unknown patterns in
data, so all the input data to be analyzed and labeled in the presence of learners and therefore
facilitating operational learning and improving detection accuracy through the detection process.
Unsupervised learning algorithms are relatively new than supervised to work on intrusion
detection systems. Unsupervised learning algorithms that have been applied to intrusion

19

detection using deep learning include: Autoencoder [26], [27], Restricted Boltzmann Machine
(RBM) [26], [28], [29] and Generative Adversarial Network (GAN) [30], [31].
There are various unsupervised deep learning algorithms, among which the Generative
Adversarial Networks (GAN) used in this research is the most promising one. GAN is first
introduced in 2014 [7]. GAN has shown great results in many generative tasks to replicate the
real-world rich content such as images, human language, and music. It is inspired by game
theory: two models, a Generator and a Discriminator, are competing with each other while
making each other stronger at the same time.
The two models, the Generator and Discriminator, are trained together [32]. The Generator
generates a batch of samples, and these, along with real examples from the domain, are provided
to the Discriminator and classified as real or fake. The Discriminator is then updated to get better
at discriminating real and fake samples in the next round, and importantly, the Generator is
updated based on how well, or not, the generated samples fooled the Discriminator. After the
training process, the Generator model is discarded as we are interested in the Discriminator.

The Discriminator model takes an example from the domain as input (real or generated) and
predicts a binary class label of real or fake (generated). The real example comes from the
training dataset. The generated examples are output by the Generator model.

In supervised learning, we may be interested in developing a model to predict a class label given
an example of input variables. This predictive modelling task is called classification.
Classification is also traditionally referred to as discriminative modelling.

2.3.1.Generative Adversarial Networks
Generative models attempt to learn the exact distribution of real data for modeling, and their
importance is significantly increased because of their high adaptability in various fields.
However, most of the traditional generative models use the maximum likelihood principle to
train the model, in order to make the parameterization of the model approximate to the real data
distribution as much as possible, which makes these models inadequate in dealing with the
complexity of high-dimensional data.

20

A GAN model includes two sub networks; these are Generator G and a Discriminator D. The
Generator aims to generate synthetic data similar to the real data, and the Discriminator intends
to distinguish artificial data from real data [8]. Thus, the Generator and the Discriminator
improve each other. GANs are currently a hot research topic used to growth data in attack
detection, which partly ease the problem of IDS dataset shortages. Meanwhile, GANs belong to
adversarial learning approaches which can raise the detection accuracy of models by adding
adversarial samples to the training set.
According to the theoretical descent from Goodfellow, after several steps of training and
assuming that G and D both have sufficient capacity, the real data probability distribution will be
the same as the data probability distribution provided by G, and neither G nor D can be
improved, that is, when the optimizations achieved, an equilibrium state will occur between G
and D, and D's output is 0.5 [7]. Two points can be inferred from this derivation. First of all,
GAN can solve the likelihood difficulty with only using the relative behavior of the two
distributions. Secondly, GAN can measure the inconsistency between the generated data
distribution and the real data distribution in an implicit way through D, and then learn to reduce
the inconsistency.
However, still there are problems on standard GAN. In order to generate high-resolution and
high-quality samples, both the Generator and Discriminator are asked to be deeper and larger.
Under the exposed adversarial framework, it’s hard to balance and optimize such large-scale
deep networks [33]. So it has to be appropriate hyper-parameters like learning rate, updating
steps and network architectures are critical configurations. Unsuitable settings reduce GAN’s
performance or even fail to produce any reasonable results. Since the training strategy is fixed, it
is hard to adjust the balance between the Generator and Discriminator during the training process
fine tune training as shown in Figure 2.5.

21

Figure 2.5: Architecture of a generative adversarial network adopted from [34]

There are many researches developed various GAN variants to solve training instability by
changing the objective function, the structure, etc. Typically, assuming the optimal Discriminator
for the given Generator is learned, different objective functions of the Generator aim to measure
the distance between the generated distribution and the target data distribution under different
metrics.
The original GAN uses Jensen-Shannon divergence (JSD) as the metric [35]. A number of
metrics have been introduced to improve GAN’s performance, such as least-squares [36],
Kullback Leibler (KL) divergence [37] and Wasserstein distance [38]. However, according to
both theoretical analyses and experimental results’, minimizing each distance has its own pros
and cons. For example, during the training iteration is increases or number of epoch, the
Generator may collapse where it always produces same output. The model is measured KL
divergence that eliminates the vanishing gradient issues [38], [39]. According to the paper
released [40], if the dimensionality of noise is less than the dimension of the real dataset (as is
typically the case), then it’s impossible for Generator to be continuous. These are because in
most cases Generator outputs will be contained in a union of low dimensional manifolds, and

22

therefore have measure 0 in original dataset. Likewise, Wasserstein distance greatly improves
training stability but can have non-convergent limit cycles near equilibrium [41].

2.3.2.Wasserstein Generative Adversarial Networks
The Wasserstein GAN (WGAN) was introduced in 2017 paper titled “Wasserstein GAN”. It is
one of variance of GAN that seeks an alternate way of training the Generator model to better
approximate the distribution of data observed in a given training dataset. Instead of using a
Discriminator to classify or predict the probability of generated data as being real or fake, the
WGAN changes or replaces the Discriminator model with a critic that scores the realness or
fakeness of a given data [38].
The WGAN remedies the problem by redefining the loss function with Wasserstein distance,
which makes the training process stable and less sensitive to hyperparameter selection. WGAN
attempts to minimize the distance between the distribution of the data observed in the training
dataset and the distribution observed in generated data; which is also called the earth mover
distance (EM).
EM distance can provide a meaningful and smooth representation of the distance between two
distributions even in the case without overlaps. Given the competitive nature between Generator
and Discriminator, we don’t have a clear point at which we want to stop training. Also it
measures the distance horizontally and similarity between both probability distributions unlike
Kullback Leibler and Jeson Shenon divergence measures vertically on original GAN.
The WGAN [35] uses the earth mover’s distance as a loss function that clearly correlates with
the visual quality of the samples generated. The benefit of the WGAN is that the training process
is more stable and less sensitive to model architecture and choice of hyperparameter
configurations.

2.4. Overfitting and Underfitting
In Deep learning or other machine learning approaches, models are trained very well and correct
predictions for any sample in the training data, however can’t make correct predictions for
unseen data outside the training samples. Model is considered right when it behaves nearly same
way on training and test data with highest accuracy. However if we did not get the predictions as
expected it will cause the problem on performance of the model. Now, suppose we want to check

23

how well our machine learning model learns and generalizes to the new data. For that we have
overfitting and underfitting, which are majorly responsible for the poor performances of the
machine learning algorithms.
2.4.1. Overfitting
Overfitting happens when a model learns the details and noise in the training data which can
negatively impact the performance of the model on new unseen data. When a model gets trained
with so much of data, it starts learning from the noise and inaccurate data entries in our data set.
Then the model does not categorize the data correctly, because of too many details and noise.
The causes of overfitting are the non-parametric and non-linear methods because these types of
machine learning algorithms have more freedom in building the model based on the dataset and
therefore they can really build unrealistic models. Overfitting can be prevented using different
strategies such as cross-validation, feature selection, reducing network size in neural network,
dropout and early stopping [42].
2.4.2. Underfitting
Underfitting happens when algorithm used to build prediction model is very simple and not able
to learn complex pattern from the training data. In that case accuracy will be on lower side on
seen training data as well as unseen test data. Underfitting destroys the accuracy of our machine
learning model. Its occurrence simply means that our model or the algorithm does not fit the data
well enough. It usually happens when we have less data to build an accurate model and also
when we try to build a linear model with a non-linear data. In such cases the rules of the machine
learning model are too easy and flexible to be applied on such minimal data and therefore the
model will probably make a lot of wrong predictions. Underfitting can be avoided by using more
data and also reducing the features by feature selection.

2.5. Hyperparameter Tuning
Hyperparameters are important for machine learning algorithms since they directly control the
behaviors of training algorithms and have a significant effect on the performance of machine
learning models [43]. It is a parameter whose value is used to control the structure of neural
network and during training and testing of model. Hyperparameters are variables set by the data
scientist before training and helps to control the implementation of the model. For example, for

24

deep learning algorithms, the following are initialized hyperparameters network weight
initialization, activation function, number of hidden layers and units, learning rate, momentum,
number of epochs and batch size. Models can have various hyperparameters and finding the best
combination of parameters can be treated as a search problem. Three strategies for
hyperparameter tuning are [44]: grid search, random search and Bayesian optimization.
2.5.1. Grid Search
Grid search is the most basic hyperparameter tuning method. With this technique, we simply
build a model for each possible combination of all of the hyperparameter values provided,
evaluating each model, and selecting the architecture which produces the optimal results.
2.5.2. Random Search
Random search differs from grid search in that we longer provided a discrete set of values to
explore for each hyperparameter; rather, we provide a statistical distribution for each
hyperparameter from which values may be randomly sampled.
2.5.3. Bayesian Optimization
The previous two methods performed individual experiments building models with various
hyperparameter values and recording the model performance for each. Because each experiment
was performed in isolation, it is very easy to parallelize this process. However, because each
experiment was performed in isolation, we cannot able to use the information from one
experiment to improve the next experiment.

2.6. Related Works
There has been done a lot of research on intrusion detection. Researchers working on IDS based
on machine learning algorithms have also developed many methods to improve system
performance. Niyaz has research on both SIDS and ADIDS using self-taught learning, a deep
learning technique based on sparse auto-encoder and soft-max regression, to develop an NIDS.
STL has two stages for classification which are Unsupervised Feature Learning (UFL) on
unlabeled data and classification on labeled data [9].
The experiment was conducted on NSL-KDD dataset training data without labels for feature
learning using sparse auto encoder for the first stage of self-taught learning. In the second stage
they apply the newly learned features representation on the training data itself for the

25

classification using soft-max regression. It was evaluated the performance of STL and SM using
the test data and STL perform better in anomaly detection than SM. But from the research they
only uses one dataset may have impact differently on both algorithms due to the unbalanced data
properties.
According to the paper [45] using different deep neural network architectures including
Convolutional Neural Networks, Autoencoders, and Recurrent Neural Networks. These deep
models were trained on NSLKDD training dataset and evaluated on both test datasets provided
by NSLKDD namely NSLKDDTest+ and NSLKDDTest21. For training and evaluation of deep
models, a GPU powered test-bed using Keras with Theano backend was employed. To make
model comparisons more credible, the researchers implemented conventional ML IDS models
with different well-known classification techniques including Extreme Learning Machine, k-NN,
Decision-Tree, Random Forest, Support Vector Machine, Naive-Bays, and QDA. Both DNN and
conventional ML models were evaluated using well known classification metrics including ROC
Curve, Area under ROC, Precision-Recall Curve, mean average precision and accuracy of
classification. Both DCNN and LSTM models showed exceptional performance with 85% and
89% Accuracy on test dataset.
In the paper proposed by Farahnakian used four Autoencoders where the output of each auto-
encoder in the current layer is used as the input of the auto-encoder in the next layer [27]. In
addition for classify purpose; softmax classifies the attack classes from the input dataset and full
fining to find optimal hyper-parameter. The experimental results show low false negative rate
(0.42%), high accuracy (94.71%) and high detection rate (94.53%) on KDD-CUP’99 dataset.
However still a classifier used for detect unknown attack is limited to domain knowledge.
In the research [46], GAN is used to improve the malware detection effect. To evade detection,
malware applications try to generate packets similar to normal packets. They configured a virtual
network system with hosts, servers, and an IPS. They have used private dataset for the study to
show GAN improve the detection for unknown attacks. To collect the dataset, they started up
trained a GAN model. The GAN guided the malware to produce packets similar to Facebook. As
the training epochs increased, the packets blocked by the IPS decreased and packet that passed
inspection increased. The result was that the malicious packets generated by the GAN were more
similar to normal packets. Then, by analyzing the generated packets, the robustness of the IPS

26

was improved. But still the study do not showed the evaluation metrics for in which percent false
alarm rate decreased and accuracy achieved.
The paper has elaborately summarized the usefulness of DNNs in IDS. For the purpose of
reference, other classical ML algorithms have been accounted and compared against the results
of DNN. The experiment is conducted on Keras with TensorFlow with GPU enabled on Nvidia-
GK110BGLTesla-k40. Also, hyper-tuning of parameters to figure out the optimum set of
parameters to achieve the desired result is all by itself a separate field with plenty of future scope
for research. The paper used the learning is kept constant at 0.01 while the other parameters
where optimized. The count of the neurons in a layer was experimented by changing it over the
range of 2 to 1024. After that, the count was further increased to 1280 but did not yield any
appreciable increase in accuracy. Therefore the neuron count was tuned to 1024. Additional
optimization used on selecting 5 counts of hidden layers models in which layers of 1, 2, 3, 4 and
5 respectively for DNN. Different datasets have reviewed and KDDCup-’99’ was selected to
work on. The publicly available KDDCup-’99’ dataset has been primarily used as the
benchmarking tool for the study, However in the data processing , the research don not take
account the categorical features and only taken 41 features as input. Finally, the best
performance was showed by DNN consisted 3 hidden layer compared to all the others and
measured Accuracy 93.0 %, Precision 99.7, Recall 91.5 and F1 score 95.5% [47].
According to the paper [48] proposed in framework focuses on incorporating deep adversarial
learning with statistical learning and exploiting learning based data augmentation with a GAN.
The KDD99 dataset is both unbalanced and lacks new data, which leads to poor generalizability
of machine learning models. To address these problems, they utilized a GAN to expand the
dataset. The GAN model generated data similar to the flow data of KDD99. Adding this
generated data to the training set allows attack variants to be detected. They selected 8 types of
attacks and compared the accuracies achieved on the original dataset compared to the expanded
dataset. The experimental results showed that adversarial learning improved 7 accuracies in 8
attack types [48].
The study have been done by Liu [4], to identify the challenges in the IDS’s. Also it is a baseline
for this research paper. Although machine learning methods have been great advances in the
field of intrusion detection, the following challenges were identified. The first one is lack of

27

available datasets, in the field of computer security it is hard to find dataset more resemble the
network implementation environment due to security risk and privacy issues [4]. There are
limited publicly available dataset such as KDD99, NSL-KDD, DARPA and ISCX 2012 [8]; each
of them have its own strength and weakness. But the main problem is shortage of amount of
tagged and identifies anomaly behaviors. On the other hand, constructing new datasets depends
on expert knowledge, and the labor cost is high. New types of attacks are emerging, and some
existing datasets are too old to reflect these new attacks.
Secondly, most studies emphasize the detection results tends to low efficiency; therefore, they
usually employ complicated models and extensive data preprocessing methods, leading to low
efficiency [4]. However, to reduce harm as much as possible, IDSs need to detect attacks in real
time. Thirdly, lower detection accuracy in actual environments which IDS have implemented
based on ML a certain ability to detect intrusions, but they often do not perform well on
completely unfamiliar data. The dataset does not cover all typical real-world samples. A lot of
research works have been done which can be applied to intrusion detection. But the related
works we reviewed showed the performance, detection rate, training time, and False Alarm Rate
in IDS remains one of the major issues.
In order to overcome the above challenges, IDS have been developed based on ML. The major
trends of IDS research focused on the following aspects [4].

1. Combining domain knowledge with machine learning can improve the detection effect,
especially when the goal is to recognize specific types of attacks in specific application
scenarios. Which it is rule-based and hybrid approaches.

2. Improvements in machine learning algorithms are the main means to enhance the
detection effect. Thus, studies involving deep learning and unsupervised learning
methods have an increasing trend.

In general, the Network Security applications of ML [46] involve spam classifiers, malware
analysis, and intrusion detection and network traffic identification. Table 2.1 summarizes the
application domains that have been studied in the past. As it can be seen, there are few studies
related to Intrusion detection and they both assume an active influence model.

28

Table 2.1: Security applications of adversarial ML
Application References
Spam Bayes classifier Joseph [49] , Zhang [48]
Malware analysis Grosse [50]
Anomaly Intrusion detection Ezeme [51], Niyaz [9]
Traffic identification Ateniese [52]

Generative adversarial networks is one of unsupervised deep learning algorithm which is based
on game theory by generating samples with Generator and identify normal profile from
generated samples by Discriminator [7]. It solved the shortage of datasets as well as the
Discriminator more learning from fake generated samples that tries to fool it. However there are
factors that limited affect the efficiency of the algorithm and the variance effects on IDS have to
be studied deeply [38].

29

CHAPTER THREE
METHODOLOGY

3.1. Overview
In this study, the research approach is followed design science and presented the design of the
proposed intrusion detection. Different components of the proposed IDS are described with their
relevance and techniques to use while building those components. It includes research design,
type and sources of data, the tools and techniques, algorithms, data analysis and presentation, and
evaluation metrics.
This chapter summarizes the components of IDS based on GAN, including: data pre-processing,
IDS structure model, detection methods, and evaluation metrics. Data pre-processing describes
how to numeric convert and normalize the data in the NSL-KDD dataset so that the data
becomes vectors of completely numeric converted that can be entered into IDS. IDSes based on
GAN and WGAN are implemented by using the programming language Python with Keras as
the deep learning framework and tensor flow as backend.

3.2. Research Design Approach
In this work, we followed a design science approach to mitigate the unknown attack using a deep
learning neural network model. The research design was comprised by the result of the literature
review. Firstly it is conduct a survey on review literature to acquire a general understanding of
the research area and come up with specific topic to be review comprehensively. This brings a
deeper understanding about a topic and its problems domain to be clearly revealed. Through this
literature we identify the importance of the previous works conducted by different scholars in the
area of intrusion detection system [4], [8]. Existing works related to this research work weighed
to identify and point direction in providing solution to identified problems.
The second thing to do is to set objectives to be accomplished in order to solve problem and
scope of the research to be touched and focused. Thirdly, the data should be collect from
different datasets to study patterns that can identify known and unknown attacks from normal
data. In the train-test split phase the whole preprocessed data is split into training set for training
deep learning algorithms and testing set for evaluating models’ performance. In the validation

30

split phase, the training set is further split into actual training and validation set. In training with
default parameters phase, the machine learning algorithm is trained using the training data on
their default parameters and produced a trained model. The trained model is then evaluated its
performance on the separated preprocessed testing data.
On the other hand, the grid search phase is used to find the optimal parameters for a model by
constructing a parameter grid. In this phase first the training and validation data is passed to the
grid search. Then, the parameter grid of hyperparameters and classification algorithm are
specified and passed to the cross-validation. The cross-validation searches the whole parameter
grid and running the training set for selecting the best parameters. Then, the models are
evaluated on the validation set. The selected best parameters are then used for building final
trained model which is then evaluated on the testing set.
Next, we have proposed a solution from the identified problem on the literature survey; we have
selected GAN and WGAN algorithms used. After identifying those optimal hyperparameter
requirements, we designed and implement of Anomaly Intrusion detection models using GAN
and WGAN algorithms. Then finally we evaluated the model using test dataset based on IDS
metrics like accuracy, precision, recall, accuracy and F1-score. [53].

3.3. Data Preparation
In this preprocessing phase, the raw dataset of NSL-KDD intrusion detection dataset is
downloaded from Internet based on the paper [54] Canadian Institute for Cyber security
organization. The datasets used for network packet analysis in commercial products are not
easily available due to privacy issues. However, there are a few publicly available datasets such
as DARPA, KDDCup 1999, NSL-KDD and ADFA-LD and they are widely used as benchmarks.
To the best of our knowledge, two datasets such as KDDCup 1999 dataset and NSL-KDD
dataset have been popularly employed as training and testing datasets. In order to conduct this
research, the researcher used secondary sources of data [55] which previously being collected
through network. This offline dataset is used in the training phase of this module. It is labeled
dataset that can easily learn the system. In this study, we used simulated dataset called NSL-
KDD for this training and testing phase [55].

31

3.3.1. Dataset Description

The NSL-KDD dataset is refined version of the KDD’99 dataset. The KDD cup dataset has been
widely used as a benchmark dataset in NIDS evaluation for many years, but it has a serious
defect that both the training data and the test data contain a large number of redundant records. In
the training dataset and the test dataset, approximately 78% and 75% of the records were
redundant, respectively [54]. These redundant records make the learning algorithm biased
against frequent attack records but neglects infrequent harmful attack records. And the large
numbers of frequent normal records also decline the algorithm’s learning of attack records.
The NSL-KDD dataset eliminates all redundant records in the training and test data of the
original KDD’99 dataset, and replaces the KDD’99 dataset as the benchmark dataset for NIDS
evaluation. Records of different classes are balanced in the NSL-KDD, which avoids the
classification bias problem. The NSL-KDD [4] also removed duplicate and redundant records;
therefore, it contains only a moderate number of records. Therefore, the experiments will be
implementing on the whole dataset.
Number of datasets available in NSL-KDD which consist of two parts [13]: (i) KDDTrain+ and
(ii) KDDTest+. The KDDTrain+ part of the dataset NSL-KDD is used to train a system to detect
network intrusions or the detection method. It consists of four classes of attacks and a normal
class data set. The KDDTest+ part of NSL-KDD dataset is used for testing a detection method or
a system when it is evaluated for performance. The training is performed on KDDTrain+ data
which contain 22 attack types and testing is performed on KDDTest+ data which contains
additional 17 attack type.

Table 3.1: Records distribution of training set and testing set in NSL-KDD dataset
 Total Normal Attack

Dos Probe R2L U2R Total Attack
KDDTrain+ 125972 67342 45927 11656 995 52 58630
KDDTest+ 22542 9710 7458 2421 2887 67 12832

32

NSL-KDD dataset comprises close to 4,898,431 unique connection vectors, where every
connection vector consists of 42 features of which 34 are continuous features and 7 are discrete
features and 1 class attribute. These 42 features are included three types: Binary, Numeric and
Nominal. Each vector is labeled as either normal or attack. There are four major categories of
attacks labeled in NSL-KDD: denial of service, probing, users-to-root and remote-to-local attack.
Totally it includes 5 classes with normal attack class [56].

A) Denial of Service Attack (DoS): is an attack in which the attacker makes some
computing or memory resource too busy or too full, achieved by flooding target hosts or
networks to handle legitimate requests, or denies legitimate users access to a machine e.g.
synchronize flooding, Relevant features: “source bytes” and “percentage of packets with
errors”.

B) Probing Attack: is an attempt to gather information about a network of computers for
the apparent purpose of circumventing its security controls. The attacker probes various
ports in order to observe what subset of traffic is being monitored at which IP addresses,
which enables the attacker to target subsequent pernicious activity toward those less
tightly managed hosts e.g. port scanning, Relevant features: “duration of connection” and
“source bytes”.

C) Remote to Local Attack (R2L): occurs when an attacker who has the ability to send
packets to a machine over a network but who does not have an account on that machine
exploits some vulnerability to gain local access that would enable the attacker to exploit a
local user’s privileges as a user of that machine e.g. password guessing, Relevant
features: Network level features – “duration of connection” and “service requested” and
host level features: “number of failed login attempts”.

D) User to Root Attack (U2R): Initially attacker access normal user account, later gain
access to the root by exploiting the vulnerabilities of the system (perhaps gained by
sniffing passwords, a dictionary attack, or social engineering) and is able to exploit some
vulnerability to gain root access to the system. Table 3.2 describes a list of NSL-KDD
features in dataset. E.g. buffer overflow attacks, Relevant features: “number of file
creations” and “number of shell prompts invoked”.

33

Table 3.2: NSL-KDD features and value types adopted from [10]
Types Features
Nominal Service(3), Protocol_Type(2), Flag(4)
Binary Su_Attempted(15), Is_Host_Login(21), Root_Shell(14),

Is_Guest_Login(22), Land(7), Logged_In(12)
Numeric Duration(1), Dst_Bytes(6), Urgent(9), Src_Bytes(5), Count(23),

Num_Failed_Logins(11), Num_Root(16),Hot(10), Num_Access_Files(19),
Wrong_Fragment(8), Rerror_Rate(27), Dst_Host_Srv_Serror_Rate(39),
Dst_Host_Srv_Count(33), Srv_Diff_Host_Rate(31), Srv_Count(24),
Num_File_Creations(17),Dst_Host_Diff_Srv_Rate(35), Num_Shells(18),
Num_Compromised(13), Dstdst_Host_Rerror_Rate(40),
Num_Outbound_Cmds(20), Serror_Rate(25), Dst_Host_Count(32),
Dst_Host_Same_Srv_Rate(34), Diff_Srv_Rate(30), Srv_Rerror_Rate(28),
Same_Srv_Rate(29), Dst_Host_Serror_Rate(38),
Dst_Host_Same_Src_Port_Rate(36), Srv_Serror_Rate(26),
Dst_Host_Srv_Diff_Host_Rate(37), Dst_Host_Srv_Rerror_Rate(41),

The 42nd attribute contains data about the various 5 classes of network connection vectors and
they are categorized as one normal class and four attack class shown in Table 3.3.

Table 3.3: Mapping of attack class with attack type
Attack Class Attack Type
DoS Back, Land, Neptune, Pod, Smurf, Teardrop, Apache2,

Udpstorm, Processtable, Worm (10)
Probe Satan, Ipsweep, Nmap, Portsweep, Mscan, Saint (6)

R2L
Guess_Password, Ftp_write, Imap, Phf, Multihop,
Warezmaster, Warezclient, Spy, Xlock, Xsnoop,
Snmpguess, Snmpgetattack,
Httptunnel, Sendmail, Named (16)

U2R Buffer_overflow, Loadmodule, Rootkit, Perl, Sqlattack,
Xterm, Ps (7)

34

3.3.2. Data Processing
Data preprocessing phase is one of the critical steps in data mining process which performs the
preparation and transformation of the original dataset. The various steps are included in data
processing [57]; they are data cleaning, feature reduction and future construction. Feature
reduction includes feature extraction and feature selection. However, in deep learning feature
reduction is conducted automatically by neural network.
Machines need specific representations of the input data for both training and testing which is
termed features before feed to a deep learning algorithm. In order to prepare the data in that
format preprocessing tasks such as string indexing, one-hot encoding, feature selection, and
normalization are performed on the training and testing data.
The first task is done by converting both KDDTrain+ and KDDTest+ .text to .csv file and NSL-
KDD dataset contains 38 numeric features and 4 non-numeric features as attribute [58]. We have
done transforming of each symbolic column of the data to numeric. Each column has its own
customization table, depending on the column content. Non numeric attribute like protocol type,
service and flag attribute need to convert as numeric attribute using LabelEncoder algorithm,
because the training input and testing input is given to GAN and WGAN should be numeric
matrix. So these categorical features are identified and extracted to 3 protocol type, 70 service
and 11 for flag in total 84 dummies column formed using One-Hot-Encoding. Continuing in this
way, 42-dimensional features map into 84 categorical features to get 126 dimensional features
after transformation. After that it is dropping the three categorical features and difficulty feature
which are expanded to get 122 features dimensional dataset.
The class feature also labelled as numeric type, to do this arrangement all values is categorized
into 5 classes starts with normal labelled as 0, DOS labelled as 1, R2L labelled as 2, U2R
labelled as 3 and probe labelled as 4. However in this study only focused on 2 –class
classification normal and attack. So the dataset is re-arranged for 2-class 1 for normal and 0 for
attack.
Feature scaling is an essential step to deal with local optima, and skews towards particular
features. It also facilitates the ML-based IDS with faster training. We apply standard scaling
MinMax Scaler, which it is transform features by scaling each feature to a given range. Also the

35

difference in all features value to be scale between 0 and maximum value in the dataset in order
to flatten more or less look like standard normally distributed data.
According to above five classifications are converted to two classes with 0 for attack and 1 for
normal transaction in the dataset. Also the dataset is prepared in to two formats. The first one is
included only normal transactions and the second one is both attack and normal transactions are
included shown in Figure 3.1. In this step, the train-test split procedure is used to estimate the
performance of machine learning algorithms when they are used to make predictions on data
(dataset which has normal and attack class) not used to train the model.

Figure 3.1: Data processing

When working on tuning models we need to consider some other datasets. This dataset helps to
validate the model and is called validation dataset. The validation dataset is a sample of data
from the available dataset which is not seen in the training data and gives us an estimate of the
model’s performance in terms of tuning the hyperparameters. The dataset is already split into
training and testing sets. Then we split the training set further into an actual training set and a
validation set. Out of the training set, 80% is used for training and 20% for validation.

36

3.4. Model Architecture
After the preprocessing and conversion of complete data, data modeling is conducted. In order to
do this research we have selected Generative Adversarial Neural Network, Wasserstein
Generative Adversarial Network and Deep Neural Network as a training and detection
algorithms. We have got a number of advantages that are stated below.
 The complex internal structures make them to learn and accommodate large number of

features and patterns.
 They have integral property of learning through interconnected artificial neurons during

training.
 They can easily generalize form similar patterns through the knowledge they get it from

training.
 As Generative adversarial neural network is generated new data from latent space and

classify normal from attack as probability value.
To define model architecture of selected algorithms, we have taken in to two perspectives. The
first one is setting default value for listed parameters to find out on each selected algorithms such
as number of hidden layers, number of neurons on hidden layer, number of epochs (training
iteration), activation function, loss function, learning rate, dropout, batch size and regularization
which is based on keras framework.
The second one is to find out hyperparameters of each algorithm through tuning parameters
which stated above to decide whether the training starts using default parameters or tuning
hyperparameters is needed to find optimal set of hyperparameter values. The more
hyperparameters of an algorithm needed to be tune, the slower the tuning process and
computationally expensive. So we had to select a minimum subset of model hyperparameters to
tune.
In Table 3.4 shown that hyperparameters to be selected for tuning and set the default values as
taken with heuristic approach. In GAN, Discriminator network have an outer layer to have
sigmoid activation function because of the neural network is classifier and sigmoid calculates the
values to be between 0 and 1. Also the loss function is binary classification due to the output is
normal or attack. For WGAN, the Discriminator network used Wasserstein distance for
classification due to for stability of the training and classification purpose. On Generator side of

37

both GAN and WGAN the outer layer is normal Tanh activation function, because of the output
is transferred to the Discriminator network as equal input size, however Generator network is not
capable in classification purpose and tune through the Discriminator network. So only the
Discriminator network will be optimized hyperparameter. On optimizer side Adam is used for
gradient decent optimization due to its reliability and for models training to be more quickly
[59].

Table 3.4: Hyperparameters selected for tuning and default values
 Deep Learning Algorithms GAN WGAN

Discriminator Discriminator
Learning Rate Selected Selected
Number of hidden layers Selected Selected
Number of neurons on
hidden layer

Selected Selected

Batch size Selected Selected
Epoch Selected Selected
Activation function LeakyRelu and

Sigmoid
LeakyRelu and
Sigmoid

Loss function Binary cross
entropy

Wasserstein
distance

Optimizer Adam Adam

3.4.1. Grid Search
Grid search is the process of reading the data to configure optimal parameters for a given model
which simply makes a complete search over a given subset of the hyperparameters space
of the training algorithm [60]. Grid search is built a model on each parameter combination possible.
It iterates through every parameter combination and stores a model for each combination. This
phase helps to show that the parameters derived in the training phase work based on evaluation
metrics. If the results are not satisfactory, then the model must be trained again to obtain better
hyperparameter values which can produce accurate models. Both training and validation set are

38

passed to the grid search. Then the parameter grid (hyperparameters with default values) and
algorithm are specified and passed to the cross-validation. The cross-validation run on the
training data and searches the whole parameter grid for finding best parameters. The developed
models are validated their effectiveness on the validation data. The selected optimal parameters
are used to build the final model. The final model is then evaluated on the testing set.

3.4.2. Cross-validation
Cross-validation is a model validation technique for assessing how the results of a statistical
analysis will generalize to an independent data set. It is mainly used in settings where the goal is
prediction, and one wants to estimate how accurately a predictive model will perform in practice.
In a prediction problem, a model is usually given a dataset of known data on which training is
run and a dataset of unknown data (validation dataset) against which the model is tested (testing
dataset). There are different types of cross-validation but in this research, a grid search with 5-
fold cross-validation is used to evaluate and select the best subset of hyperparameters for the
selected models. In 5-fold cross-validation, the original sample is randomly partitioned into 5
equal sized subsamples. Of the 5 subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining 4 (5 – 1) subsamples are used as training data. To
reduce variability, the cross-validation process is then repeated 5 times using different partitions.
Parameter space used in grid search as follow:
Learning Rate: 0.1, 0.01, 0.001 and 0.0001
Number of Hidden Layers: 1, 2 and 3 layers
Number of Neurons on Hidden Layer: 122 and 64
Batch Size: 128,500 and 1000
Epoch: 10,100 and 1000
Dropout: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9

39

3.5. Data Modeling
The dataset is noted to be of the form Xi, Ci, where Xi is the feature vectors of sample X (i = {1,
2... m}) and Ci is the class label of sample i (where Ci ∈ (normal, attack)). In order to solve the
intrusion detection problem, Generative Adversarial Network-based Intrusion Detection System
runs in two phases: training and testing as shown in Algorithm 3.1.
In the training phase, the system uses a training dataset and creates a model based on the
proposed GAN and its variance WGAN model. At this stage, noise variables consisting of
random numbers uniformly distributed in the (0, 1) range are input into G to generate examples
of adversarial traffic. In other hand the Xnormal data are entered in to Discriminator network from
the training dataset. Then the system employs the model for identifying the label of testing data
in the testing phase to estimate the performance of the model.
In the second phase, all data in the KDDTest+ dataset, including normal traffic transactions and
attack traffic transactions, are pre-processed as training data did before, be de-labeled and
digitized. These pre-processed data Xtest will be sent to Discriminator network for anomaly
detection in GAN and WGAN based IDS. The trained Discriminator can distinguish normal data
from abnormal data and the output value of the range from 0 to 1. When the output value is 1,
Discriminator determines that the input is normal traffic example through the prior adversarial
learning in the training stage, otherwise the input is attack. However the Discriminator is tough
to evaluate on the classification point to achieve Nash Equilibrium.

40

Algorithm 1: GAN implementation on NIDS
 Input : KDDTrain+

1. Normal traffic transaction Xnormal= {x1,x2,x3…..xm}from the training set; with
m samples in defined batch size

2. The random variable noise n;
KDDTest+

3. Xtest which contains Xnormal and Xattack
 Build Generator G, the Discriminator D and GAN; select mini-batch for training

Xavier initialize Weight = 0 and Bias = 0
 for Initialized GAN do
 for i = 1; training times do
 Train Discriminator ; Train Generator
 for G do
 G generates the fake normal traffic examples Xgenerated from n based

on Xnormal; G Passes Xgenerated to D;
 Compute the loss function , optimizer update weight

 end
 for D do
 D classifies dataset including Xgenerated and Xnormal;
 end
 end
 end
 for Trained D do

 D classifies the testing set KDDTest+, getting predicted labels; Ci
end

Algorithm 3.1: GAN and implementation on NIDS
The WGAN algorithmic implementation is similar with GAN; however the difference is stated
as follows:

41

 Use a linear activation function in the output layer of the critic model (instead of
sigmoid).

 Use Wasserstein loss to train the critic and Generator models that promote larger
difference between scores for real and generated images.

 Constrain critic (Discriminator) model weights to a limited range after each mini batch
update (-c, c) [38] .

In Figure 3.2 Xnormal data enter to Discriminator Network to classify as real or normal. Also
Noise n is entered to Generator Network to generate fake or attack data, then in order to fool
transfer to the Discriminator and classified as generated or attack malicious intrusion. The Cost
function is tuning both Generator and Discriminator by update weight and bias to continuously to
play a min-max game where one is trying to outsmart the other.

Figure 3.2: Baseline training

42

Figure 3.3: Testing

In Figure 3.3 shown testing of the model and predict the output from the training phase and
Generator try to close generated data to the original distribution of data.

3.6. Evaluation Metrics
There are many different methods to measure the performance of GAN module prediction. The
researcher [61] reviewed and critically stated more than 24 quantitative and 5 qualitative
measures for evaluating generative models with a particular emphasis on GAN-derived models.
Most of the measurements are mainly concerned on measuring Image classification and
generation. However in the case of evaluate the performance of the GAN based IDS models is
different and challenging in classification because of the output on Discriminator classify in the
probability of normality or abnormality.
The most common performance measures in the field of IDS deep learning are precision, recall,
and F1 score. In these metrics for evaluating IDS, the higher the value represents that the model
performs better. But in some cases the precision and recall are contradictory, so the evaluation
can only considered the balance according to the requirements of task. Thus, F1 score becomes
an important indicator, the higher the score, the better performance that the IDS has.

43

Since the experiments in this work is mainly to discriminate normal records and malicious attack
records, a confusion matrix of 2-classes classifiers is adopted to calculate the performance
metrics and the comparison between GAN and WGAN. Based on Ali Borji’s studied from 29
metrics stated, we have chosen precision, recall and F1 score based on high detecting over
fitting, disentangled latent space and well-defined boundary (0,1) [61]. Lucic proposed to
compute precision, recall and F1 score to quantify the degree of over fitting in GANs [53].
The confusion matrix is a table that describes the classification results in detail. Each column of
the matrix represents the instance in the prediction class and each row represents the instance in
the actual class. The results can be summarized into the following four basic situations:
 True Positive (TP): Normal records are correctly discriminated by the model.
 False Negative (FN): Malicious attacks are incorrectly identified as the normal

records.
 False Positive (FP): Normal records are incorrectly discriminated to be anomaly.
 True Negative (TN): Malicious attacks are successfully identified by the model

Table 3.5: Confusion Matrix
 Prediction

Normal Attack

Actual

Normal (Negative) True Negative (TN) False Positive (FP)

Attack (positive) False Negative (FN) True Positive (TP)
From these cases of confusion matrix, classification indicators such as [4]: Accuracy, Precision,
Recall (Sensitivity), F1 score and AUC (Area under the Receiver Operating Characteristic
(ROC) Curve) can be further calculated.
Accuracy: is defined as the ratio of correctly classified samples to total samples. Accuracy is a
suitable metric when the dataset is balanced. In real network environments; however, normal
samples are far more abundant than are abnormal samples; thus, accuracy may not be a suitable
metric. The accuracy of the proposed system is calculated using Equation 3.1

44

 Accuracy = ___ TP + TN_____ (3.1)
 TP + FP + TN + FN
Precision: is defined as the ratio of true positive samples to predicted positive samples; it
represents the confidence of attack detection.
 Precision = _ __TP____ (3.2)
 TP + FP
Recall: is defined as the ratio of true positive samples to total positive samples and is also called
the detection rate. The detection rate reflects the model’s ability to recognize attacks, which is an
important metric in IDS.
 Recall = ___TP____ (3.3)
 TP + FN
F1-score: is defined as the harmonic average of the precision and the recall.
 F1-score = 2 * Recall * Precision (3.4)
 Recall + Precision
The false positive rate (FPR): is defined as the ratio of false positive samples to predicted
positive samples. In attack detection, the FPR is also called the false alarm rate.
 FPR = _ __FP____ (3.5)
 TN + FP
The purpose of IDS is to recognize attacks; therefore, attack samples are usually regarded as
positives, and normal samples are usually regarded as negatives. In attack detection, the
frequently used metrics include accuracy, recall (or detection rate), FNR (or missed alarm rate),
and FPR (or false alarm rate).

45

CHAPTER FOUR
EXPERIMENT

4.1. Overview
In this Chapter the implementation detail for anomaly-based intrusion detection experiment
presented. The specific model refers to the existing code provided by many previous works, and
the main part is completed by making appropriate modifications according to the code published
by Erik Linder Noren on GitHub [62]. We have used this implementation to evaluate the
performance of the proposed work which is the GAN and WGAN anomaly detection and the
evaluation presented here. In this Chapter we will cover overview of how the implementation is
done, tools used to do this experiment, how components of the system are implemented and
finally measure the performance of the work done.

4.2. Experimental Setup
4.2.1.Tools Used
According to the GAN and WGAN code provided by Erik on GitHub platform based on Keras
framework for artificial image generation, in this experiment, the code is modified corresponding
to IDS are implemented. In terms of the hardware environment, the test was performed on a
laptop equipped with an Intel(R) core I5-7900 CPU (3.30GHz), 4GB RAM and a Linux Ubuntu
20.04 operating system. The experimental simulations were performed using Google Colab
research framework with TensorFlow2.0 as back end on Keras and Scikit-learn on Juypter
notebook. These are the most commonly used machine learning frameworks, and Python 3 was
used as the programming language which are available as open source.
4.2.1.1. TensorFlow2.0
Tensor flow is Google’s open source deep learning library released on November 2015. It
includes C++ and Python API's. It has plenty of abstraction power but users might also be
working with computational primitive wrappers such as matrix operations, element-wise math
operators, and looping control. Tensor flow considers networks as a directed graph of nodes with

46

data flow computation and dependencies encapsulated in it. Tensor flow is used as a back end for
Keras library which is used for development of deep neural network classifiers.
4.2.1.2. Keras
Keras is a Python machine learning library for deep learning that can run using Theano or Tensor
Flow as a back end. It is main focus is enabling implementation of deep learning models as fast
and easy as possible for research and development. In this experiment, the code is implemented
using Python 3 and can execute on GPUs and CPUs given the underlying frameworks. Keras is
used for the development of deep neural network classifiers for proposed GAN and WGAN IDS
model.
4.2.1.3. Scikit Learn
Scikit-learn is a Python machine learning library which includes a wide range of state-of-the-art
machine learning algorithms for supervised and unsupervised problems. It focuses on bringing
machine learning to non-specialists by providing a general-purpose high-level language. It is
easy to use, has high performance and contains detailed. Scikit learn is used to evaluate
Discriminator network to classify by calculating performance metrics.
4.2.1.4. Activation Function
An activation function is a function that is added into an artificial neural network in order to help
the network learn complex patterns in the data. When comparing with a neuron-based model that
is in our brains, the activation function is at the end deciding what is to be fired to the next
neuron. Activation functions also help normalize the output of each neuron to a range between 1
and 0 or between -1 and 1 [63].

A. Leaky ReLU: allows the pass of a small gradient signal for negative values. As a result, it
makes the gradients from the Discriminator flows stronger into the Generator. Instead of
passing a gradient (slope) of 0 in the back-prop pass, it passes a small negative gradient.
In this experiment we have used in every layer except output layer of Discriminator and
Generator network.

B. Sigmoid: Just like any other binary classification model, the output of the Discriminator
is a single number between 0 and 1, which can be interpreted as the probability of the
input data being fake i.e. generated. This method is generally used for binary

47

classification problems. So we have used it at output layer of Discriminator network to
classify normal and attack.

C. Tanh: It is very similar to the sigmoid except that the output values are in the range of -1
to +1. Thus, tanh is said to be zero centered. The difference between the sigmoid and tanh
is that the gradients are not restricted to move in one direction for tanh. Thus, tanh is
likely to converge faster than the sigmoid function.it is implemented on last output layer
of Generator in order to increase convergence and the output also is not binary.

4.2.1.5. Optimizer
Adam: Adaptive Moment Estimation is a popular version of gradient descent because it
automatically tunes itself and gives good results in a wide range of problems. Adam is used as an
optimizer to speed up the convergence, and the weight decay is set to 0.005 to prevent over
fitting. It works better faster and more reliably reaching a global minimum when minimizing the
cost function in training [59].

4.2.2. Implementation of the Components
In our experiment, we constructed a Keras deep neural network with an input layer, three hidden
layers and an output layer as described in Figure 4.1. On the Discriminator Network the input
dimension is 122 and the output dimension is 1. Whereas in Generator network the input noise
dimension are 100 and the output dimension are 122. The hidden layers contain 122 on both
Generator and Discriminator neural network at each 3 hidden layers with dropout rate is 0.6 for
GAN and 0.5 for WGAN. Our model initiation parameters are for the batch size 1000, for the
epoch reached 1000 epochs. The learning rate is 0.001 for GAN and 0.0001 for WGAN. The loss
function is used binary cross entropy for GAN and Wasserstein distance for WGAN. It is
independent for each vector component (class), meaning that the loss computed for every
Discriminator output vector component is not affected by other component values. According to
our objective is to identify anomaly intrusion detection, it is used for 2-class classification, were
the insight of an element belonging to a certain class either normal or attack.

48

Figure 4.1: Implementation Components on GAN and WGAN

4.2. Experimental Scenarios
To evaluate our hypothesis different experiments are conducted. Generally these experiments can
be grouped in to two. The first part of experiments are aimed at evaluate the performance of
GAN and WGAN model with default parameter. The second part of experiments is to evaluate
the performance of GAN and WGAN with tuned hyperparameter and comparison with DNN
model.

The results might be varying given the stochastic nature of the learning algorithm. Nevertheless,
the general structure of training should be very similar. First, the loss and accuracy of the
Discriminator and loss for the Generator model are reported to the console each iteration of the
training loop. This is important. A stable GAN will have a Discriminator loss around 0.5,
typically between 0.5 and maybe as high as 0.7 or 0.8. The Generator loss is typically higher and
may hover around between 1.0 and 2.0 or even higher. The accuracy of the Discriminator on
both real and generated (fake) data will not be 50%, but should typically hover around 70% to
80%. For both the Discriminator and Generator, behaviors are likely to start off unreliable and
move around a lot before the model converges to a stable equilibrium [64].

49

CHAPTER FIVE
ANALYSIS AND RESULT

For the scope of this paper, the NSL KDD pre-processed dataset was fed into Deep Learning
algorithms that are GAN and WGAN in order to compare with the paper is done on DNN [47].
This chapter will present all experimental results and corresponding analysis results.

5.1. Analysis of Grid Search Result
Table 5.1 shows that the result of grid search optimal hyperparameter and default parameter
values that pass through grid search using keras default initializer framework.

Table 5.1: Optimal hyperparameter and default parameters of deep learning algorithms
Deep
Learning
Algorithms

GAN Discriminator WGAN Discriminator
Default
value

Hyperparameter Default
value

Hyperparameter

Learning Rate 0.001 0.001 0.001 0.0001
Number of
hidden layers

1 3 1 3

Number of
neurons on
hidden layer

122 122 122 122

Batch size 32 1000 32 1000
Epoch 100 1000 100 1000
Dropout 0.5 0.6 0.5 0.5

5.2. Performance Evaluation
In this Section, the experimental results on both scenarios learning with default parameters and
learning using best parameters by applying the hyperparameter technique for the selected
classification algorithms are interpreted. All the classification models are evaluated by using a
confusion matrix. This evaluation metrics shows the number of correct and incorrect predictions
made by the classification model compared to the target values in the data by calculating the

50

number of test samples using four categories of evaluation metrics. This was previously stated in
Chapter 3 under 3.6 evaluation metrics. Using default parameters, the WGAN has obtained 89 %
of accuracy, 77.6% of recall, 78.1% of precision and 77.8% of F1-score. While the accuracy
47.8%, precision 45.2%, recall 99.9% and F1 score 62.3% found for the GAN as shown in
Tables 5.2. The WGAN classifier is the best performer in case of accuracy and compared to the
GAN.

Table 5.2 : Model classifiers with default parameters
Type of Algorithm Accuracy Recall Precision F1 Score
GAN 47.8% 99.9% 45.2% 62.2%
WGAN 89% 77.6% 78.1% 77.8%

To improve the accuracy of the two algorithms further, a hyperparameter tuning method is
performed. Table 5.2, shows the accuracy, precision, recall, and f1-score results of the two
algorithms before the hyperparameter tuning technique is applied. As can be seen in Tables 5.2
and 5.3, the accuracy of the two classify algorithms trained on their default parameters is lower
than the accuracy gained by trained on best parameters by using the hyperparameter tuning
technique. WGAN has good performance in case of accuracy than GAN after optimizing the
hyperparameters indicates as a better classier in all metrics.

Table 5.3: Model classifiers with after hyperparameter tuned
Type of Algorithm Accuracy Recall Precision F1 Score
GAN 93.4% 93% 96.6% 94.8%
WGAN 95.7% 96.9% 96.9% 96.8%

5.3. Comparison of Classification Models
To compare with the existing anomaly detection techniques in references [47] [65], we
conduct experiments on NSL-KDD dataset. In reference [47], network anomaly detection
based on NSL-KDD dataset was explored. The research used the learning rate as its constant at
0.01 while the other two parameters number of neurons and number of hidden layers where
optimized. The count of the neurons in a layer was experimented by changing it over the range of
2 to 1024. And the number of hidden layer in the network used 1 up to 5 layers. Also the dropout

51

is to regularize each layer at 0.01. The detection accuracy of the algorithms was found at DNN
using 3 hidden layers and score 93% of accuracy, 99.7% of precision, 91.5% of recall and 95.5%
of f1 score.
In reference [65], the author proposed a supervised based feature selection method based on data
mining algorithms to identify relevant features from the NSL-KDD dataset. The detection
accuracy of the algorithms Wrapper-Bayesnet feature selection method and classification was
compared to Filter-Bayesnet, Wrapper Naïve Bayes, Filter Naïve Bayes and Wrapper-Bayesnet
method was obtained an accuracy of 95.3%.
The optimization technique used in our proposed work has ease of calculation than the other
methods used in the two referenced papers. The detection accuracy of the studies is also lower
than our approach which WGAN scored accuracy of 95.7%. Based on these comparison results,
our approach outperforms the studies in references [47] [65] in network anomaly detection.

52

CHAPTER SIX
CONCLUSION AND FUTURE WORK
6.1. Conclusion
Nowadays a growing of interconnected devices and services lead a world communication
environment more complex and undetermined by human capability. Computer networks are
dynamic, growing, and continually evolving with assisting human communication and
integration of systems and services. Hackers or intruders have been affecting this interconnected
environment by disrupting or break up with steal of information for personal purpose or advance.
As complexity grows, it becomes harder to effectively communicate to human decision-makers
the results of methods and metrics for monitoring networks, classifying traffic, and identifying
malicious or abnormal events. Security experts require tools that support them understand the
reason for, and make decisions about the information their analytic systems produce.
In order to support security experts, in this data driven world using deep learning algorithms as
back-end engine is more support automatically to identify malicious and normal network traffics.
In this paper we have proposed using Generative Adversarial Networks undoubtedly due to the
fact that this kind of algorithm is relatively new and even though generate data for imbalanced
class with in dataset. This work has shown the effect of parameters and neural network structure
on the performance of GAN based IDS. The experimental results have shown that number of
hidden layers, dropouts, batch size and epoch (iteration of model training) of the Discriminator
model have significant effects on IDS performance for learning pattern in the dataset.

6.2. Future Work
Our work has shown a relatively good result in detecting attacks however it is necessary to
improve our model further to detect more known and unknown attacks.
In addition, a further work that could be an extension of our work to fulfill the need as follows:

 Using different hyperparameter optimization technique to improve and identify core
difference parameters that influence the model performance.

53

 Study on additional features and dataset included and selecting relatively high
performance models.

 Hybrid IDS have shown high performance in other studies. So integrating with other
signature-based IDS to form a hybrid IDS and measure the performance to what extent
is usable the model.

 Implement with front end applications and using a model for analysis as a back end
engine on live network traffic and measure the effectiveness of the whole system.

54

Reference

[1] A. Ometov, S. Bezzateev and J. Kannisto, "Facilitating the Delegation of Use for Private Devices in

the Era of the Internet of Wearable Things," IEEE Internet of Things Journal, vol. 4, no. 4, pp. 843-
854, August 2017.

[2] W. Spencer, "tech-faq.com," 05 April 2019. [Online]. Available: http://www.tech-faq.com/network-
attacks.html. [Accessed 10 05 2020].

[3] A.-M. Research, "Kaspersky Security Bulletin 2019 Statistics," Kaspersky, 2019.
[4] H. Liu and B. Lang, "Machine Learning and Deep Learning Methods for Intrusion Detection Systems:

A Survey," Applied Sciences, vol. 9, no. 20, pp. 43-96, 2019.
[5] S. Mohammadi, M. H. Sherkat and M. Jamporazmey, "A taxonomy framework based on ITU-TX-805

security architecture for quantitative determination of computer network vulnerabilities," Security
And Communication Networks, vol. 6, p. 864–880, 2013.

[6] S. T. F. Al-Janabi and H. A. Saeed, "A Neural Network Based Anomaly Intrusion Detection System,"
Developments in E-Systems Engineering, 2011.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y.
Bengio, "Generative adversarial nets," Advances in Neural Information Processing Systems, vol. 3,
pp. 2672-2680, 2014.

[8] A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzama, "Survey of intrusion detection systems:
techniques, datasets and challenges," 2019.

[9] Q. Niyaz, W. Sun, A. Y Javaid and M. Alam, "A Deep Learning Approach for Network Intrusion
Detection System," in 9th EAI International Conference on Bio-inspired Information and
Communications Technologies, Toledo, 2016.

[10] D. Mwiti, 02 07 2018. [Online]. Available: https://heartbeat.fritz.ai/introduction-to-generative-
adversarial-networks-gans-35ef44f21193. [Accessed 15 12 2020].

[11] A. A.Ghorbani, W. Lu and M. Tavallaee, Network Intrusion Detection and Prevention: Concepts and
Techniques, 1st ed., New York: Springer Science & Business Media, 2019.

[12] A. Adeyemo , "Design of an Intrusion Detection System (IDS) and an Intrusion Prevention System
(IPS) for the EIU Cybersecurity Laboratory," 2016.

55

[13] N. Sainis, D. Srivastava and R. Singh, "Classification of various Dataset for Intrusion Detection
System," International Journal of Emerging Technology and Advanced Engineering, vol. 8, no. 1,
2018.

[14] M. Kebede , "K -Means Clustering and Random Forest Based Hybrid Intrusion Detection Algorithm,"
2017.

[15] J. Sen and S. Mehtab, "Machine Learning Applications in Misuse and Anomaly Detection," 2019.
[16] K. Letou , D. Devi and Y. J. Singh , "Host-based Intrusion Detection and Prevention System (HIDPS),"

International Journal of Computer Applications , 2013.
[17] A. Youssef and A. Emam, "Network Intrusion Detection Using Data Mining and Network Behaviour

Analysis," 2011.
[18] D. Li, D. Chen, J. Goh and S.-K. Ng, "Anomaly Detection with Generative Adversarial Networks for

Multivariate Time Series," 2019.
[19] P. García-Teodoro, J. . E. Díaz-Verdejo, G. Maciá-Fernández and E. Vázquez, "Anomaly-based

network intrusion detection:Techniques, systems and challenges," Computers & Security,, vol. 28,
no. 1, pp. 18-28, 2009.

[20] J. Lee, S. Moskovics and L. Silacci, "A Survey of Intrusion Detection Analysis Methods," 1999.
[21] P. Mishra, E. S. Pilli and V. Varadharajan, "Securing Virtual Machines from Anomalies Using

ProgramBehavior Analysis in Cloud Environment," in IEEE 18th International Conference on High
Performance Computing and Communications; IEEE 14th International Conference on Smart City;
IEEE 2nd International Conference on Data Science and Systems, 2016.

[22] S. Naseer and Y. Saleem, "Enhanced Network Intrusion Detection using Deep Convolutional Neural
Networks," KSII Transactions on Internet and Information Systems, vol. 12, no. 10, pp. 5159-5178,
2018.

[23] L. Mohammadpour, T. C. Ling, C. S. Liew and C. Y. Chong, "A Convolutional Neural Network for
Network Intrusion Detection System," in THE 46TH MEETING OF THE ASIA-PACIFIC ADVANCED
NETWORK, Auckland, 2018.

[24] C. Yin, Y. Zhu, J. Fei and X. He, "A Deep Learning Approach for Intrusion Detection Using Recurrent
Neural Networks," IEEE Access, vol. 5, p. 21954–21961, 2017.

[25] M. Alom, V. R. Bontupalli and T. M. Taha, "Intrusion Detection using Deep Belief Networks," in
National Aerospace and Electronics Conference (NAECON), 2015.

56

[26] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim and K. J. Kim, "A survey of deep learning-based network
anomaly detection," 2017.

[27] F. Farahnakian and J. Heikkonen, "A Deep Auto-Encoder based Approach for Intrusion Detection
System," in 20th International Conference on Advanced Communications Technology(ICACT), 2018.

[28] A. Gouveia and M. Correia, "A Systematic Approach for the Application of Restricted Boltzmann
Machines in Network Intrusion Detection," in 14th International Work-Conference on Artificial
Neural Networks, Cadiz, 2017.

[29] G. E. Hinton, "A practical guide to training restricted Boltzmann machines," in Neural Networks:
Tricks of the Trade, Berlin, Springer, 2012, pp. 599-619.

[30] T. Merino, M. Stillwell, M. Steele, M. Coplan, J. Patton, A. Stoyanov and L. Deng, "Expansion of
Cyber Attack Data from Unbalanced Datasets Using Generative Adversarial Networks," in Software
Engineering Research Management and Applications (SERA) Studies in Computational Intelligence,
2019.

[31] M. Shahriar, N. I. Haque, M. A. Rahman and M. Alonso Jr, "G-IDS: Generative Adversarial Networks
Assisted Intrusion Detection System," in 2020 IEEE 44th Annual Computers, Software and
Applications, 2020.

[32] J. Brownlee, "A Gentle Introduction to Generative Adversarial Networks," 17 June 2019. [Online].
Available: https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/.
[Accessed 13 10 2020].

[33] C. Wang, C. Xu, X. Yao and D. Tao, "Evolutionary Generative Adversarial Networks," 2019.
[34] A. Gharakhanian, "generative-adversarial-networks-hot-topic-machine-learning," 3 January 2017.

[Online]. Available: https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-
topic-machine-learning.html. [Accessed 13 10 2020].

[35] L. Weng, "From GAN to WGAN," 2019.
[36] X. Mao, Q. Liy, H. Xiez, . R. Y.K. Laux, Z. Wang and S. P. Smolleyk, "Least Squares Generative

Adversarial Networks".
[37] A. Radford, L. Metz and S. Chintala, "Unsupervised representation learning with deep convolutional

generative adversarial networks," 2016.
[38] M. Arjovsky, S. Chintala and L. Bottou, "Wasserstein GAN," in the 34th International Conference on

Machine Learning (ICML), 2017.

57

[39] M. Zamani, "Machine Learning Techniques for Intrusion Detection," 2013.
[40] M. Arjovsky and L. Bottou, "Towards Principled Methods for Training Generative Adverserial

Networks," 2017.
[41] V. Nagarajan and J. Kolter, "Gradient descent gan optimization," in Advances in Neural Information

Processing Systems, 2017.
[42] D. Nautiyal, "Underfitting and Overfitting in Machine Learning," 18 May 2020. [Online]. Available:

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/. [Accessed 18 11
2020].

[43] X.-Y. C. H. Z. L.-D. X. H. L. S.-H. D. Jia Wu, "Hyperparameter Optimization for Machine Learning
Models Based on Bayesian Optimization," Journal of Electronic Science and Technology, vol. 17, no.
1, pp. 26-40, 2019.

[44] jeremyjordan.me, "Hyperparameter tuning for machine learning models," 2 November 2017.
[Online]. Available: https://www.jeremyjordan.me/hyperparameter-tuning/. [Accessed 18 10
2020].

[45] K. Han, S. Naseer, Y. Saleem, S. Khalid and J. Han, "Enhanced Network Anomaly Detection Based on
Deep Neural Network," IEEE Access, vol. 6, pp. 1-1, 2018.

[46] M. Rigaki, "Adversarial Deep Learning Against Intrusion Detection Classifiers," Luleå, 2017.
[47] R. Vigneswaran, V. R and S. Kp, "Evaluating Shallow and Deep Neural Networks for Network

Intrusion Detection Systems in Cyber Security," Conference: 2018 9th International Conference on
Computing, Communication and Networking Technologies (ICCCNT), pp. 1-6, 2018.

[48] H. Zhang, X. Yu, P. Ren, C. Luo and G. Min, "Deep Adversarial Learning in Intrusion Detection: A Data
Augmentation Enhanced Framework," 2019.

[49] L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein and J. D. Tygar, "Adversarial machine learning,"
in the 4th ACM workshop on Security and artificial, 2011.

[50] K. Grosse, N. Papernot, P. Manoharan, M. Backes and P. McDaniel, "Adversarial Perturbations
Against Deep Neural Networks for Malware Classification," arXiv preprint, 2016.

[51] O. M. EZEME, Q. H. MAHMOUD and A. AZIM, "Design and Development of AD-CGAN:Conditional
Generative Adversarial Networks for Anomaly Detection," vol. 8, p. 177667–177681, July 2020.

[52] G. Ateniese, G. Felici, L. V. Mancini, A. Spognardi, A. Villani and D. Vitali, "Hacking Smart Machines
with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers,"

58

International Journal of Security and Networks, vol. 10, no. 3, pp. 137-150, 2015.
[53] M. Lucic, K. Kurach, M. Michalski, O. Bousquet and S. Gelly, "Are gans created equal? a large-scale

study," 2018.
[54] M. Tavallaee, E. Bagheri, W. Lu and A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set,"

Second IEEE Symposium on Computational Intelligence for Security and Defense Applications
(CISDA), 2009.

[55] "NSL-KDD dataset," 2009. [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html. [Accessed
17 09 2020].

[56] L. D. a. D. Shantharajah, "A Study on NSL-KDD Dataset for Intrusion Detection System Based on
Classification Algorithms," International Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, no. 6, 2015.

[57] . J. J. Davis and A. J. Clark, "Data Preprocessing for Anomaly Based Network Intrusion Detection : A
review," Computer & Security, vol. 30, pp. 353-375, 2011.

[58] D. Srivastava, "Classification of various Dataset for Intrusion Detection System," 2018.
[59] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," 2017.
[60] P. Liashchynskyi and P. Liashchynskyi, "Grid Search, Random Search, Genetic Algorithm: A Big

Comparison for Neural Architecture Search," 2019.
[61] A. Borji, "Pros and Cons of GAN Evaluation Measures," 2018.
[62] E. L. Norén, "Keras-GAN," 2018. [Online]. Available: https://github.com/eriklindernoren/Keras-GAN.

[Accessed 18 09 2020].
[63] V. Jain, 30 December 2019. [Online]. Available: https://towardsdatascience.com/everything-you-

need-to-know-about-activation-functions-in-deep-learning-models-84ba9f82c253. [Accessed 13 11
2020].

[64] J. Brownlee, "How to Identify and Diagnose GAN Failure Modes," 8 July 2019. [Online]. Available:
https://machinelearningmastery.com/practical-guide-to-gan-failure-modes/. [Accessed 13 10
2020].

[65] M. Teffera, "A data mining approach for Intrusion Detection System Using Wrapper Based Feature
Selection Method," Masters Thesis, June 2014.

[66] M. Rigaki and S. García, "Bringing a GAN to a Knife-Fight: Adapting Malware Communication to

59

Avoid Detection," in 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, 2018.

60

APPENDICES
Appendix A: Hyperparameter Optimization using Grid
Search from Keras Framework

61

Appendix B: Discriminator and Generator Model on GAN

