

ST. MARY’S UNIVERSITY

SCHOOL OF GRADUATE STUDIES

FACULTY OF INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

DESIGNING A STEMMING ALGORITHM FOR

KAMBAATA TEXT: A RULE BASED APPROACH

BY

JONATHAN SAMUEL SUMAMO

 MARCH, 2018

ADDIS ABABA, ETHIOPIA

ii

DESIGNING A STEMMING ALGORITHM FOR

KAMBAATA TEXT: A RULE BASED APPROACH

BY

JONATHAN SAMUEL SUMAMO

A Thesis Submitted to School of Graduate Studies of

St. Mary’s University in partial fulfillment of the Requirements

for the Degree of Master of Science in Computer Science

MARCH, 2018

ADDIS ABABA, ETHIOPIA

iii

ST. MARY’S UNIVERSITY

SCHOOL OF GRADUATE STUDIES

FACULTY OF INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

DESIGNING A STEMMING ALGORITHM FOR

KAMBAATA TEXT: A RULE BASED APPROACH

BY

JONATHAN SAMUEL SUMAMO

APPROVED BY BOARD OF EXAMINERS

___________________ _________ _______

DEAN, GRADUATE STUDIES SIGNATURE DATE

SOLOMON TEFERRA (PhD) ________ _______

ADVISOR SIGNATURE DATE

MILLION MESHESHA (PhD)__ _________ _______

EXTERNAL EXAMINER SIGNATURE DATE

MICHAEL MELESE (PhD CANDIDATE) ________ _______

INTERNAL EXAMINER SIGNATURE DATE

iv

DEDICATION

This work is dedicated to my family.

v

ACKNOWLEDGMENT

All praise, honor and glory to my Lord Jesus Christ for His richest grace, mercy and giving

me the strength for the accomplishment of this thesis.

First and foremost, I wish to place sincere thanks to my advisor Dr. Solomon Teferra,

School of Information Sciences, Addis Ababa University, for his interest and enthusiasm

about this thesis work and for his priceless guidance and support throughout my research

work. Thank you Dr. Solomon for your sincerity and motivation which deeply inspired me

to complete this thesis!

I am also very grateful and would like to extend my sincere thanks to Asrat Mulatu, PhD

Candidate at IT PhD program, Addis Ababa University, for his consistent support and

useful comments during this study.

I would also like to express my heartfelt thanks to Dr. Treis Yvonne, a Deputy Director of

Languages and Cultures of Sub-Saharan Africa (LLACAN) and researcher at CNRS

located at Paris, France for sharing the linguistic materials and her journal articles on

Kambaata language and her comments during email conversation.

I would also like to express my sincere gratitude to Kambaata Tembaaro Zone Education

Department, especially Ato Alemu Banta, the author of Kambaatissa-Amharic-English

dictionary, for his cooperation in providing all the necessary resources for text corpus

including school text books and his own dictionary.

I am also thankful to all my classmates and friends for the moral support, especially Eden

Getachew and Yonas Fiseha for their constructive comments and many other individuals

that I couldn’t name here who have directly or indirectly helped me in completion of my

thesis.

Last but never be the least, I would like to thank my beloved families, for their love,

encouragement, prayer and support towards my study.

Jonathan Samuel Sumamo

March, 2018

vi

TABLE OF CONTENTS

DEDICATION .. iv

ACKNOWLEDGMENT ... v

LIST OF TABLES ... x

LIST OF FIGURES ... xii

LIST OF APPENDIXES ... xii

LIST OF ACRONYMS AND ABBREVIATIONS ... xiii

ABSTRACT .. xv

CHAPTER ONE .. 1

INTRODUCTION ... 1

1.1. BACKGROUND OF THE STUDY ... 1

1.2. STATEMENT OF THE PROBLEM.. 4

1.3. OBJECTIVE OF THE STUDY ... 8

1.3.1. GENERAL OBJECTIVE ... 8

1.3.2. SPECIFIC OBJECTIVES ... 8

1.4. METHODOLOGY ... 8

1.4.1. GENERAL APPROACH ... 8

1.4.2. REVIEW OF LITERATURE ... 9

1.4.3. DATA COLLECTION AND CORPUS PREPARATION 9

1.4.4. DEVELOPING TOOLS AND TECHNIQUES ... 10

1.4.5. TESTING THE ALGORITHM .. 10

1.5. SCOPE, DELIMITATION AND LIMITATION OF THE STUDY 11

1.6. SIGNIFICANCE OF THE STUDY ... 11

1.7. ORGANIZATION OF THE THESIS .. 12

CHAPTER TWO ... 13

LITERATURE REVIEW AND RELATED WORKS .. 13

2.1. OVERVIEW ... 13

2.2. CONFLATION TECHNIQUES .. 13

2.3. STEMMING ALGORITHMS ... 14

2.3.1. AFFIX REMOVAL ALGORITHMS ... 17

2.3.2. DICTIONARY-BASED TECHNIQUE ... 18

2.3.3. SUCCESSOR VARIETY ... 19

2.3.4. STATISTICAL APPROACH ... 19

2.4. EVALUATION METHODS FOR STEMMERS .. 19

2.5. RELATED WORKS .. 20

vii

2.5.1. STEMMING ALGORITHMS FOR FOREIGN LANGUAGES 20

2.5.1.1. ENGLISH STEMMING ALGORITHMS .. 20

2.5.1.2. FRENCH STEMMING ALGORITHM .. 23

2.5.1.3. GREEK STEMMING ALGORITHM .. 24

2.5.2. STEMMING ALGORITHMS FOR LOCAL LANGUAGES 24

2.5.2.1. STEMMER FOR AMHARIC ... 25

2.5.2.2. STEMMER FOR AFAAN OROMO .. 26

2.5.2.3. STEMMER FOR TIGRIGNA .. 27

2.5.2.4. STEMMER FOR WOLAYTTA ... 28

2.5.2.5. STEMMER FOR SILT’E ... 28

2.5.2.6. RESEARCH GAP ... 28

CHAPTER THREE ... 29

MORPHOLOGY OF KAMBAATA LANGUAGE .. 29

3.1. OVERVIEW OF THE KAMBAATA LANGUAGE ... 29

3.2. THE WITING SYSTEM OF KAMBAATA LANGUAGE 29

3.2.1. ALPHABETS ... 30

3.2.1.1. VOWELS .. 31

3.2.1.2. CONSONANTS .. 31

3.3. KAMBAATA MORPHOLOGICAL SYSTEM AND WORD FORMATION 32

3.3.1. VERB MORPHOLOGY... 33

3.3.1.1. MORPHOLOGICAL STRUCTURE OF VERBS 34

3.3.1.2. ASPECT MARKING ON MAIN VERBS.. 35

3.3.1.3. NEGATION OF VERBS .. 38

3.3.1.4. DERIVATION .. 40

3.3.1.5. INFLECTIONAL SUFFIXES FOR A VERB IN KAMBAATA 41

3.3.2. NOUN MORPHOLOGY .. 41

3.3.2.1. MORPHOLOGICAL STRUCTURE OF NOUNS 42

3.3.2.2. CASE... 43

3.3.2.3. GENDER... 46

3.3.2.4. NUMBER .. 46

3.3.2.5. WORD FORMATION .. 47

3.3.2.6. DERIVATION .. 47

3.3.2.7. REDUPLICATION ... 48

3.3.2.8. COMPOUNDING AND BLENDING .. 48

3.3.3. ADJECTIVE MORPHOLOGY .. 48

3.3.3.1. MORPHOLOGICAL STRUCTURE OF ADJECTIVES 49

viii

3.3.3.2. CASE AND GENDER INFLECTION ... 49

3.3.3.3. NUMBER MARKING .. 51

3.3.3.4. WORD FORMATION .. 51

3.3.3.5. DERIVATION .. 51

3.3.3.6. REDUPLICATION ... 52

3.3.3.7. COMPOUNDING ... 52

3.4. CHALLENGE OF THE LANGAUGE FOR STEMMING 52

CHAPTER FOUR ... 53

DESIGN OF THE STEMMING ALGORITHM .. 53

4.1. INTRODUCTION .. 53

4.2. THE CORPUS .. 53

4.3. NORMALIZATION AND TOKENIZATION .. 54

4.4. COMPILATION OF AFFIXES ... 55

4.4.1. COMPILATION OF SUFFIXES ... 56

4.4.2. COMPILATION OF INFIXES .. 57

4.5. THE RULES ... 57

4.5.1. CONTEXT SENSITIVE RULES ... 57

4.5.2. RECODING RULES .. 60

4.5.3. SUFFIXES REMOVAL RULES.. 61

4.6. THE PROPOSED STEMMING ALGORITHM.. 62

4.7. IMPLEMENTATION OF THE STEMMER ... 65

4.8. EXPERMENTATION AND EVALUATION ... 66

4.8.1. EXPERMENTATION OF THE STEMMER ... 66

4.8.2. EVALUATION AND DISCUSSION OF THE FIRST STEMMER 67

4.8.2.1. THE RESULTS ... 67

4.8.2.2. WORD COMPRESSION .. 69

4.8.2.3. PROBLEMS OBSERVED .. 70

4.8.3. EVALUATION AND DISCUSSION OF THE IMPROVED STEMMER 71

4.8.3.1. THE RESULTS ... 71

4.8.3.2. WORD COMPRESSION .. 73

4.8.3.3. PROGRAM EXCUTION TIME ... 74

4.9. FINDING OF THE STUDY .. 74

CHAPTER FIVE ... 75

CONCLUSION AND RECOMMENDATION .. 75

5.1. CONCLUSION .. 75

5.2. RECOMMENDATION .. 77

ix

REFERENCES .. 78

DECLARATION ... 103

ENDORSEMENT .. 104

x

LIST OF TABLES

TABLE 1-1: MORPHOLOGICAL EXAMPLE - PROGRESSIVE FORM 5

TABLE 3-1: KAMBAATA ALPHABETS AND THEIR ETHIOPIC COUNTERPARTS 30

TABLE 3-2: KAMBAATA VOWELS (SHORT AND LONG) .. 31

TABLE 3-3: CONSONANT PHONEMES AND THEIR ORTHOGRAPHIC

REPRESENTATION ... 31

TABLE 3-4: STRUCTURE OF A DECLARATIVE AFFIRMATIVE MAIN VERB 34

TABLE 3-5: IMPERFECTIVE MAIN VERB ... 35

TABLE 3-6: PROGRESSIVE MAIN VERB ... 36

TABLE 3-7: PERFECTIVE MAIN VERB .. 37

TABLE 3-8: PERFECT MAIN VERB .. 37

TABLE 3-9: PARADIGM OF NEGATIVE RELATIVE VERB FORMS 39

TABLE 3-10: OTHER NEGATION SUFFIXES OF VERBS IN KAMBAATA 39

TABLE 3-11: CLAUSAL NEGATION IN KAMBAATA SUMMARIZED 40

TABLE 3-12: DERIVED VERBS AND THE CORRESPONDING ADJECTIVES 40

TABLE 3-13: OTHER FORMS OF NEGATION ... 41

TABLE 3-14: OTHER INFLECTIONAL FORMS ... 41

TABLE 3-15: TWO EXEMPLARY NOMINAL DECLENSIONS .. 42

TABLE 3-16: NOMINAL DECLENSIONS .. 44

TABLE 3-17: CASE FORMS OF A WOMAN’S NAME (MUCCURE) AND A LETTER NAME

(I) COMPARED ... 45

TABLE 3-18: DE-ADJECTIVAL QUALITY NOUNS .. 47

TABLE 3-19: DE-VERBAL NOUNS GENERATED THROUGH GEMINATION AND

PALATALIZATION .. 47

TABLE 3-20: ADJECTIVAL DECLENSIONS .. 49

TABLE 3-21: ADJECTIVES FORMED FROM NOUNS .. 51

TABLE 3-22: ADJECTIVES AND THEIR CORRESPONDING VERBS 51

TABLE 3-23: REDUPLICATED ADJECTIVES .. 52

TABLE 4-1: WORD DISTRIBUTION RATIO OF SAMPLE KAMBAATA TEXT 53

TABLE 4-2: SAMPLE SUFFIXES OF KAMBAATA ... 56

TABLE 4-3: INFIXATION IN KAMBAATA .. 57

TABLE 4-4: CONTEXT SENSITIVE WORDS EXAMPLE 1 ... 59

TABLE 4-5: CONTEXT SENSITIVE WORDS EXAMPLE 2 ... 60

TABLE 4-6: EXAMPLE SUBSTITUTION RULES ... 61

TABLE 4-7: EXPERIMENTATION OF SAMPLE DATA .. 66

TABLE 4-8: ACCURACY OF THE FIRST STEMMER .. 67

xi

TABLE 4-9: SAMPLE OF STEMMED WORDS BY THE FIRST KAMBAATA STEMMER .. 68

TABLE 4-10: EXAMPLES OF WRONGLY CONFLATED TERMS BY THE FIRST VERSION

OF KAMBAATA STEMMER (OBTAINED FROM THE TS1) .. 68

TABLE 4-11: WORD COMPRESSION RATIO OF TOTAL WORDS 69

TABLE 4-12: WORD COMPRESSION RATIO OF CORRECTLY STEMMED WORDS 70

TABLE 4-13: COMPARISON OF PERFORMANCE BETWEEN THE FIRST AND THE

IMPROVED STEMMER ... 72

TABLE 4-14: ACCURACY OF THE IMPROVED STEMMER .. 73

TABLE 4-15: PERFORMANCE COMPARISON OF THE FIRST VS. IMPROVED STEMMER

 .. 73

TABLE 4-16: WORD COMPRESSION RATIO .. 73

TABLE VI-1: KAMBAATA VERB INFLECTION FOR A VERB “KUL” ‘TELL’ 100

xii

LIST OF FIGURES

FIGURE 1-1: WORD CONFLATION METHODS .. 14

FIGURE 3-1: MORPHOLOGICAL STRUCTURE OF NOUNS ... 42

FIGURE 3-2: MORPHOLOGICAL STRUCTURE OF ATTRIBUTIVE ADJECTIVES 49

FIGURE 4-1: ALGORITHM FOR NORMALIZATION AND TOKENIZATION 54

FIGURE 4-2: ALGORITHM FOR CONDITION 1 .. 58

FIGURE 4-3: ALGORITHM FOR CONDITION 2 .. 58

FIGURE 4-4: ALGORITHM FOR CONDITION 3 .. 59

FIGURE 4-5: ALGORITHM FOR SUBSTITUTION ... 60

FIGURE 4-6: FLOW CHART FOR STEMMING PROCESS OF KAMBAATA STEMMER 63

FIGURE 4-7: THE PROPOSED STEMMING ALGORITHM ... 64

LIST OF APPENDIXES

APPENDIXES ... 82

APPENDIX I: SUFFIXES COMPILED FOR THE STEMMER .. 82

APPENDIX II: AFFIXES FOR RECODING RULES .. 87

APPENDIX III: RULES FOR REMOVING SUFFIXES ... 89

APPENDIX IV: KAMBAATA WORDS BEFORE STEMMING 97

APPENDIX V: KAMBAATA WORDS AFTER STEMMING ... 99

APPENDIX VI: KAMBAATA VERB INFLECTION EXAMPLE 100

APPENDIX VII: SAMPLE WORD STEM AND ITS VARIOUS WORD FORMS 101

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

Abbreviations/Acronyms Definitions

1PL 1st Person Plural

1SG 1st Person Singular

2PL 2nd Person Plural

2PL/HON 2nd Person Plural/Honorary

2SG 2nd Person Singular

3F/PL 3rd Person Feminine/3rd Person Plural

3HON 3rd Person Honorary

3M 3rd Person Masculine

3mO 3rd Person Masculine Object

ABL Ablative

ACC Accusative

AGR Agreement

ASSOC Associative

CV Consonant - Vowel sequence

CC Consonant - Consonant sequence

NCSR National Centre for Scientific Research

CVB Converb

DAT Dative

DS Different Subject

EX Existential

GEN Genitive

HEC Highland East Cushitic

ICO Imperfective Converb

ICP instrumental-comitative-perlative

IMP Imperative

INACT Past tense, counterfactual

INALCO National Institute of Oriental Languages and Civilizations

IPA International Phonetic Alphabet

IPV Imperfective

JUS Jussive

KT Kambaata and Tambaaro

LOC Locative

NEG Negation

NIPV Non-imperfective

NOM Nominative

NP Noun Phrase

OBJ Object marker

OBL Oblique case

OI Over stemming index

xiv

P/G Palatalization and Gemination

PL Plural

PRED Predicate

PROG Progressive

PVE e-perfective

PVO o-perfective

REL Relative

RVs Relative Verbs

SNNPR Southern Nations, Nationalities, and Peoples Region

SOV Subject Object Verb

SS Same Subject

ST Standard

SW Stemming weight

UI Under stemming index

xv

ABSTRACT

Stemming is the process of reducing inflectional and derivational variants of a word to its

stem. It has substantial importance in several natural language processing applications. In

this research, a rule based stemming algorithm that conflates Kambaata word variants has

been designed for the first time. The algorithm is a single pass, context-sensitive, and

longest-matching designed by adapting rule-based stemming approach. Several studies

agree that Kambaata is a strictly suffixing language with a rich morphology and word

formations mostly relying on suffixation; even though its word formation involves

infixation, compounding and reduplication as well.

The output artefact of this study is a context-sensitive, longest-match stemming algorithm

for Kambaata words. To evaluate the stemmer’s effectiveness, error counting method was

applied. Two different test sets of 1385 and 1040 distinct words were used to evaluate the

stemmer. The combined output from the first stemmer indicates that out of 2425 words,

2271 words (93.65%) stemmed correctly, 138 words (5.69%) over stemmed and 16 words

(0.66%) under stemmed.

To minimize the problems identified in the first version of Kambaata stemmer, certain

improvement was undertaken by identifying additional affixes and rules. Accordingly, the

errors of over stemming and under stemming were reduced to 2.60% (63 words) and 0.54%

(13 words), respectively. Consequently, the overall performance of the stemmer has been

enhanced to 96.87%. What is more, a dictionary reduction of 67.52% has also been

achieved for correctly stemmed words on the evaluation.

The main factor for errors in stemming Kambaata words is the language’s rich and complex

morphology. Hence a number of errors can be corrected by exploring more rules. However,

it is difficult to avoid the errors completely due to complex morphology that makes use of

concatenated suffixes, irregularities through infixation, compounding, blending, and

reduplication of affixes.

Keywords: stemming algorithm; Kambaata stemmer; rule-based stemmer; longest-match

stemmer; Kambaata language

1

CHAPTER ONE

INTRODUCTION

1.1. BACKGROUND OF THE STUDY

Variants of a basic word commonly exist in natural language texts [6]. Morphological

variations are usually the most typical, along with other sources such as alternate spellings,

miss-spellings, and variations coming from transliteration and abbreviation [6]. Stemming

solves the challenges that arise via varying morphological forms by effectively reducing

semantically related words to a common stem [1], [6].

As stated in [1], stemming algorithms are automated rules to reduce all terms with the

identical root to a common form, normally by eliminating the words' morphological affixes.

The researcher also discusses that stemming researchers are most desirable today in many

fields of computational linguistics and IR, but for numerous motives. In morphological

analysis, the stem of a term could possibly be of much less quick desire than its affixes,

which is often used as hints to grammatical structure [1], [3].

The reason behind research works on stemming algorithms is the need to enhance

information retrieval accuracy [1], and nowadays, stemmers are widely applied in different

fields of NLP such as IR, text classification, text summarization and automatic machine

translation [1].

According to Sharma [2], in the manual approach, a word in a document is queried by

searching one of its variant at a time. The same researcher discusses that this technique is

very tiresome and misses the related information of same importance [2]. Hence, that is

why stemming is broadly applied in several information retrieval systems to avoid such

kinds of difficulties and to enhance retrieval performance [3].

Stemming is applied as preprocessing stage in the development of automated text

summarization systems. Stemming algorithm is also used in machine translation to get

stemmed words or sentences [14].

Designing stemming algorithm for Kambaata language has a benefit of developing other

natural language processing applications such as, text classification, text categorization and

morphological analyzer [16].

2

An example of a stem can be the word “mar” (go - 2M) which is the stem for the variants

“marro” (goes), “marree(u)” (went), “marimba’a” (didn’t go), “marano” (will go),

“marayyoo(u)” (is going), and “marota” (to go).

Morphology is the study of structure of words and defines word formations in a language.

The most common ways of word variant formation in natural language text are suffixing

and prefixing [5]. Inflectional and derivational morphologies are the two types of

morphology [6]. Inflectional morphology is a creation of different forms of the same word

without changing its part of speech. Usually, the variations are results of changes in person,

number, tense and gender. As stated in [7], such variations have not effect on a word’s

class; that means, a verb still remains verb after its tense form is changed. For example,

“agud” (look), “agujjo” (looks), “agudayyoo(u)” (looking), “agujjee(u)” (looked).

In another way, derivational morphology results in change of the word’s class [7]. For

instance, affix changes a word from adjective to nouns, from verb to nouns, from noun to

verbs, and so on; like “jaalu” (friend), “jaalloomaan” (friendly), “jaalloomat”

(friendliness) and “jaalloomata” (friendship).

Based upon the rich morphological property of individual languages, several variations of

terms could possibly be resulted out of single stem [2]. This huge variant existence has

powerful impact on information retrieval programs. As a result, right now there is a demand

for automated procedure that can minimize the size of various terms to controllable level,

and also record the strong connection that present amongst diverse word types [8]. Even if

the several languages have various degree of morphological complexity, stemming is

generally employed in information retrieval, with the fundamental reason that

morphological variations represent equivalent meaning [16].

Morphological processing is a commonly used application for powerful and successful

information retrieval, machine translation and word summarization [8], [9]. Consequently,

it becomes extremely crucial for IR as it needs figuring out the proper word variations as

index [10]. According to Salton [11], automatic IR system is a computer software element

that helps request and access of information from databases by diverse end users.

According to Baeza-Yates [5], based upon on their particular stemming strategy, stemmers

are grouped in to four. These are: affix removal, table lookup, successor variety, and n-

gram stemmers.

3

Rule-based also known as Affix removal technique is a strategy that is implemented easily

and efficiently [63]. In this strategy, affixes are eliminated from the terms resulting in

stems. This technique was applied by [1], [12], [15], [16] [17], and [18]. Table lookup also

called Dictionary-based strategy look ups the stem of a word in a table of dictionary. Table

lookup method was employed by [14] to stem Amharic words. This approach is

straightforward and relies on the dimension of stem dictionary. The strategy also requires

significant storage space. Successor variety technique is centered on the identification of

morpheme boundaries of terms and makes use of expertise from structural linguistics. This

approach is much more complicated compared to that of affix removal technique. N-gram

method is primarily based on the recognition of n-grams for instance bi-grams and tri-

grams. This method was utilized by [13] to stem language independent words making use

of uni-gram.

As opposed to morphologically simple languages for instance English, Cushitic languages

for example Sidaama and Kambaata have very complex morphology [19]. According Treis

[19] and [20], Kambaata does not make use of prefixes for word formation. Nevertheless,

complicated terms can be created by suffixation, infixation, compounding and

reduplication, specifically by full reduplication or by reduplication of portion of the word.

The reduplicated section of the syllable is prefixed in Kambaata [19].

Kambaata is known as “Kambaati afoo” literally means ‘the mouth of Kambaata’ in

Kambaata language. It belongs to the Highland East Cushitic branch that encompass

languages spoken in south-central Ethiopia, such as Hadiyya, Libido, Kambaata, Alaaba,

Qabeena, Sidaama, Gedeo, and Burji [19]. The language is spoken and institutionalized in

Kambaata and Tambaaro (KT) Zone, which is located at northeastern part of Southern

Nations, Nationalities, and Peoples Region (SNNPR) of Ethiopia and situated (the Zone)

250 km south west of Addis Ababa, Ethiopia’s capital. The language is also spoken by

Kambaata migrants in other parts of the country and abroad. For instance, there is

significant population of Kambaata speaking migrants in South Africa.

The Kambaata people’s name and the language that they communicate is available in

numerous spellings in the literary works in addition to Kambaata; the most frequent ones

include Kambata, Kambatta, Kembata, Kembatta, Cambata, Cambatta, Kambara, Kemata

and Donga. The people of Kambaata call their language by the name Kambaatissata or

Kambaatissa. It is also called Kambaatigna/ Kambaatinya (in Amharic) or ከምባትኛ (Ge’ez

4

script - Amharic), and sometimes Kambatic (in English, just like the ‘ic’ ending of

“Amharic or Arabic”) [19], [22].

Kambaata is a Highland East Cushitic language, part of the Cushitic and the much bigger

Afro -Asiatic group and spoken by the people of Kambaata. Kambaata dialects (with lexical

similarity between dialects) are: Tambaaro (95%), Alaaba (81%), Kabeena/ Qabeena

(81%). Kambaata also has higher lexical similarity with other HEC groups, i.e. Sidaamo

(62%), Libido (57%), Hadiyya (56%), and Gedeo (54%) [22].

Kambaata is as well the name of a smaller Highland East Cushitic division, the Kambaata

group, which comprises of Kambaata (itself-being the main) and Tambaaro and also Alaaba

and Qabeena which usually known as its dialects [19], [23].

1.2. STATEMENT OF THE PROBLEM

Kambaata is one of the Zonal languages in the SNNPR of Ethiopia. At present, it is

estimated to be spoken by more than one million people [22], [23]. Currently, the language

serves as a medium of instruction in the primary schools, and is also provided as a subject

in the junior and secondary high schools and preparatory schools of KT Zone. The first

Kambaata-Amharic dictionary was published by today’s KT Zone Culture and Tourism

Department (1995 E.C./2003) and the second dictionary, ‘Kambaatissa-Amharic-English’

dictionary was published by Alamu Banta (2009 E.C/2016). Kambaata Old Testament

Bible translation in the official Latin orthography is 71% completed as of today according

the data from Bible Society of Ethiopia [68]. Booklets having bible stories like “Haaroo

Woqqaa” ‘New Way’, written in both Ge’ez and Latin script, has as well been published

by the Bible Society of Ethiopia [19]. Kambaata language Proverbs, Tales and Legends are

few of the works which has been accomplished partially until now [33].

Plenty of translation works have already started in translating materials from other

languages to Kambaata. The language is being studied at numerous levels both locally and

by researchers from abroad. As an example, now there are different research works

performed for this language by research unit of Languages and Cultures of Sub-Saharan

Africa (LLACAN) which is affiliated to the National Centre for Scientific Research

(NCSR) and the National Institute of Oriental Languages and Civilizations (INALCO) [24].

Such possibilities open up opportunities to produce a lot more written materials in the

language.

5

The advancement of technology and digital media in Ethiopia is expanding progressively

and more quickly. Accessibility and usage of the Internet and search engines are getting

part of everyday activity not only in Ethiopia but also in the rest of the Africa and the

World. Textbooks, reference books, publications, articles and various other documents can

be accessed digitally on all pervasive devices and support flexible access. Networking of

educational institutions (i. e. universities, colleges, high schools) and corporations as well

as businesses is in progress and a number of research projects with national and

international institutions on study of Kambaata language have been started recently.

Together with having access to the Internet, there is proof of a swiftly growing number of

Kambaata educational, cultural, religious, journal articles and other kinds of documents in

electronic media. Nowadays, one of the hot issues in the field is the mechanism for storing

and accessing this pervasive information in an effective and efficient way. Therefore,

document summarization, classification and information retrieval are fields that attempt to

deal with these kinds of problems [2].

Kambaata language has rich morphology [19], [54]. It makes use of the two types of

morphologies, i.e. inflectional and derivational for word formation. For instance, more than

two hundred variants can be formed from a single stem by inflection and derivation (see

Appendix VII) [55]. Example is given for a progressive form of a verb “kul” (tell)

inflection. For full list, see - Appendix VI and Appendix VII.

TABLE 1-1: MORPHOLOGICAL EXAMPLE - PROGRESSIVE FORM

Person e.g. “kul” ‘tell’

1SG kul-ayyoom(m)

2SG kul-tayyoont

3M kul-ayyoo(u)

3F/ 3PL kul-tayyoo(u)

3HON kul- eenayyoomma

1PL kun- nayyoom(m)

2PL/2HON kul- teenayyoonta

However, according to the researcher’s knowledge, Kambaata language has very few

linguistic resources and absolutely no computational works have been carried out to

computerize / automate the language in relation to NLP applications.

6

As reported by [7], the morphological complexity of a language could end up in extremely

significant amounts of variations for a word. Subsequently, word variations may induce a

substantial influence on the efficiency of IR systems as well as on morphological analysis

tools. Since Kambaata is morphologically complex language [19], there is a need for

automated programs that can easily stem words and decrease the size of a words for

required storage space minimization, text summarizers and retrieval applications, and also

determine the strong associations existing among various word varieties in the language

[17].

Stemming also has a crucial role indetermination of stem from a word by the removal of

both inflectional and derivational affixes, and therefore, there have been much desire for

stemmers with this goal [5], [7]. This demand is growing further and most likely to boost

in the future as a lot more text-processing applications turn out to be of crucial importance

[10].

According to the researcher’s observation during visits to the zone, at this time, there is

already a need for stemming algorithm and other applications for Kambaata language text.

This requires designing an automated procedure that removes inflectional and derivational

affixes of Kambaata words; and requires exploring how semantically related terms in the

language can be conflated together with one another automatically using rule based

approach which is dependent exclusively on the morphology of the particular language.

Exploring word conflation technique and designing the stemming algorithm is totally

dependent on the morphological property of that specific language due to the fact that every

language has distinct morphological structure [1], [2], [6]. Thus, it requires finding patterns

for stemming and defining and developing a program/stemmer based on the language's

morphology and word formations [1], [15], [16], [17], [18].

The formerly pointed out factors helped to determine the need to design an algorithm that

conflates Kambaata texts effectively for the users of the language.

Stemming algorithm researches have been conducted to several languages both

internationally and locally. Locally, stemmers have been attempted for Amharic [7], [14],

Afaan Oromo [15], [29], Tigrigna [12], [16], Wolaytta [17], Silt’e [18] and few others. To

the best of the researchers’ knowledge, there is no any research carried out to explore

stemming methods for Kambaata words and there has never been any attempt done to

design a rule based stemmer for the Kambaata language text. Thus, the researcher used this

7

opportunity to do a research on exploring stemming rules and designing an appropriate

algorithm for stemming Kambaata words.

Therefore, the purpose of this particular study is to explore methods and rules for stemming

Kambaata words and design a rule based stemmer in order to provide automatic word

conflation method for documents.

Hence, the research attempts to respond to the following research questions in the study

course of action: -

 What are the morphological properties and how are words formed in Kambaata?

 What are the challenges in designing rule based stemmer for Kambaata?

 What optimal stemming performance may possibly be achieved on a given test corpus?

8

1.3. OBJECTIVE OF THE STUDY

The research has the following general and specific objectives.

1.3.1. GENERAL OBJECTIVE

The main objective of this research is to design a stemming algorithm for Kambaata text

using Rule based approach.

1.3.2. SPECIFIC OBJECTIVES

To achieve the above general objective, the following specific tasks and/or objectives were

performed in the research work.

 To carry out a literature analysis on stemming algorithm researches.

 To review morphological behavior of the language to become acquainted with word

formations.

 To prepare corpus that is needed to identify affixes and stems in the language.

 To construct affixes list used in Kambaata from the corpus and different literatures.

 To explore/ adapt techniques and define rules for stemming Kambata words.

 To design a rule based stemmer for Kambaata words that conflates inflectional and

derivational affixes of the language.

 To experiment the stemmer on selected test set and measure the performance of the

stemmer designed in the study.

1.4. METHODOLOGY

1.4.1. GENERAL APPROACH

The general research approach adopted for this study is a Design Science Research

methodology which is employed for the design of the algorithm. As stated in [70], the

design science research requires the creation of an innovative, purposeful artifact for a

specified problem domain. This research process involves problem identification, solution

suggestion, development, evaluation and conclusion [70].

Problem identification: The research problem in this study has been identified by reading

NLP research problems in Ethiopia, more specifically Stemming research gaps.

Consequently, reading the research gap in the field provided the researcher an opportunity

to get aware of the limitation of stemming research and helped to easily identify which

languages have not been studied in this regard.

9

Suggestion: After problem identification, a research proposal has been prepared with a

need to apply an existing knowledge of stemming to new area of Kambaata language as a

new research effort.

Development: As part of this process, a rule based stemming technique was selected and

the appropriate algorithm was designed for the Kambaata language based on the detail

study of its morphology. Finally, an artifact of the study (the stemming algorithm) is

developed and implemented using python programming language through context sensitive

and longest match approaches.

Evaluation: After the design of the algorithm, the stemmer was evaluated using error

counting and dictionary reduction methods. The evaluation results were measured in terms

of correctly stemmed, over stemmed and under stemmed words.

Conclusion: At the end of the research process, conclusions have been derived from the

main research findings. The challenges during designing stemmer for the Kambaata

language are also discussed and the summarized behavior of the artifact is also discussed

in this phase.

1.4.2. REVIEW OF LITERATURE

To understand stemming algorithms and development or adapting strategy, several research

works for stemming algorithms on various languages such as English, French, Greek,

Amharic, Afaan-Oromo, Tigrigna, Wolaytta, Silt’e have been reviewed. To understand the

morphological properties of Kambaata, review of researches on the language is performed

by advising diverse sources such as books, journal articles, dictionary, textbooks. For

literature review of the morphology of the Kambaata language, books and journal articles

are downloaded from the online journal libraries and further information is also compiled

via email with appropriate individuals (linguists) of the language.

1.4.3. DATA COLLECTION AND CORPUS PREPARATION

A corpus is the fundamental data source needed in the development of stemming algorithm

[16]. A text data is collected and literature survey is applied for compiling affixes. As stated

in [16], a large sized text can show a reasonable language morphological behavior.

Selection of much larger sized text is therefore, an essential element in designing a stemmer

[18]. Hence for the purpose of this research, the researcher utilized a corpus of 129,929

word tokens that is believed to be a representative of the language because of its size which

10

is collected from school textbooks from Kambaata educational offices and high school. As

stated in limitation section, the researcher could not be able to get a corpus of different

domains.

1.4.4. DEVELOPING TOOLS AND TECHNIQUES

To implement the stemmer, Python programming language has been utilized for the reason

that it provides extensive support libraries for string operation [18] and in addition the

researcher is much more familiar with Python than any other language. Kambaata language

has rich morphology [54]; hence the process of stemming Kambaata words involves

dealing with mainly suffix stripping and infixation and other irregular words at lesser

degree. The algorithm is designed by examining morphological rules of the language.

For the development of the Kambaata stemmer, Affix removal (often called Rule-based)

with longest match technique is employed since it’s a broadly used stemming approach.

Rule based stemming is easier and can be implemented efficiently than other techniques if

we know the rules for affix removal in the language [63]. Most of the stemmers that have

been developed until now are based on this approach [2]. Sharma [2] has mentioned that

Rule based technique has the following advantage over Statistical approaches:

1. Stemming programs constructed using Rule based technique are faster as compared

to Statistical stemmers. Thus, stems can be obtained within short computing time

using rule based approach.

2. The performance of stemmed words by Rule based stemmers are quite higher.

1.4.5. TESTING THE ALGORITHM

Error counting technique is commonly applied method for evaluating stemmer

performance. This technique is used to examine the effectiveness of the stemmer.

Identification of correctly stemmed, over-stemmed, under-stemmed words and dictionary

size reduction is conducted to observe the result of the stemmer. The result is represented

in numbers and percentage. The percentage is used to demonstrate the accuracy of the

stemmer.

11

1.5. SCOPE, DELIMITATION AND LIMITATION OF THE

STUDY

In this study, the very first stemmer for Kambaata words that removes the affixes for

different NLP applications have been designed. Kambaata is a strictly suffixing language;

consequently, it has no known prefixes till now [19], [20]. This study is the first attempt to

explore stemming technique and design the algorithm for Kambaata language words and

the stemmer is the first of its kind. In this research, rules to stem words have been explored

and an algorithm to handle suffixes, infixes and some irregular words in Kambaata has been

designed. The stemmer is not only suffix removal but it also has context sensitive and

recoding rules to transform words that are not handled by suffix removal rules.

Reduplicated and compound words in the language are very few and are not in the scope

of this study because of the complexity of the morphological behavior of the language and

other resource limitations. The limitation of the research is that the corpus used for this

study is not of different domain. The corpus is mainly of educational domain and the

researcher is not able to find other domain corpus due to unavailability of the resources to

the researcher.

1.6. SIGNIFICANCE OF THE STUDY

Designing stemming algorithm for Kambaata words helps the language’s speakers to

discover information they desire quickly without having any kind of problems while

querying words. The artifact of this study could also be a foundation to explore and develop

various other NLP applications such as, IR systems, text summarizers, machine translation,

text categorization applications and morphological analyzers for Kambaata. Kambaata

word processing tools could also need stemming algorithm that functions together with

spell checker software to enhance the efficiency of spelling checking [69].

Kambaata word stemmer could also give an advantage of reducing the size of documents

[14]. Because an individual stem usually corresponds to several complete terms, by storing

stems rather than words, a data compression rate of more than 50 percent could possibly be

attained [2].

In Kambaata, a word has got quite large variants and conflating all these variants increases

performance of the retrieval [64]. It also decreases storage space needed for index

documents [2]. Moreover, exploring stemming techniques for the language’s words could

also provide the following advantages: -

12

 The study helps to design tools such as term frequency counter.

 It can be used to decrease word variations and to reduce total number of documents.

1.7. ORGANIZATION OF THE THESIS

The thesis document is structured in five chapters. The first chapter is the introduction that

features background, statement of the problem and its justification, the objective,

methodology, scope and limitation and the importance/application of the study.

The second chapter explains principles and strategies of stemming algorithms.

Comprehensive discussions are made on methods to stemming. Review is also made on

stemmers developed for local and foreign languages as part of related works.

Kambaata language morphology is introduced and reviewed in the third chapter. In depth

outline of Kambaata morphology is provided in this chapter.

Chapter four is the key portion of the thesis work. It presents the exploration and design of

the Kambaata stemming algorithm with short introduction followed by corpus preparation

for the algorithm. The discussion proceeds with the collection of Kambaata affixes

succeeded by the implementation of the stemmer. Finally, the evaluation of the stemming

algorithm is discussed in depth.

The last chapter presents conclusions comprehended from the findings and

recommendations for future study.

13

CHAPTER TWO

LITERATURE REVIEW AND RELATED WORKS

2.1. OVERVIEW

This chapter discusses the review of concepts of stemming algorithms and conflation

techniques. The classification of stemming algorithms based on the stemming approach

has also been discussed in detail. Review of related works for several international and

local languages is also discussed in this chapter in detail.

Stemming is an automated procedure helpful to cut down morphological variations of terms

to their citation or dictionary form [14]. As stated by Lovins [1], stemming algorithm “is a

computational procedure, which reduces all words with the same root to a common form

by striping each word of its derivational and inflectional affixes”.

2.2. CONFLATION TECHNIQUES

Word conflation is a method of matching morphological variations of terms that are

associated in meaning [3]. Conflation or removal of affix from words to convert to stems

is required in document indexing processes to specify appropriate content identifiers and

also in IR to determine appropriate query words that complement indexing terms in a

document [71]. Hence, word conflation might be conducted at indexing as well as at search

time [31].

Conflation is carried out in two tactics; either manually or automatically by means of

software programs referred to as stemmers [15], [16], [17], [18], [43]. According to

Srinivasan [71], Right hand truncation is among the frequently utilized methods for manual

conflation. Many traditional internet-based systems, for example ERIC (Education

Resources Information Center) which is an online digital library system, permit the user to

truncate query words by using wildcard characters i. e. asterisk (*) [43]. For example, more

records on the topic COMPUTATION will be retrieved if the initial lookup term is

truncated to COMPUT*. However, users usually are not familiar with the truncation

technique. Willett [31] mentioned that two main difficulties are linked with the manual

right hand truncation:

 Over truncation meaning the leftover stem of a word is very short right after

truncation;

14

 Under truncation which usually leads to retrieval of very few similar appropriate

terms.

For instance, during over truncating the word EDUCATION to EDUC, all words related to

EDUCATE and EDUCATION and also totally unrelated words are retrieved. In the case

of a word being under truncated, very few of any relevant word is retrieved e. g. if the word

COMPUTERS is truncated to COMPUTER, then all relevant documents related to

COMPUTING and COMPUTATIONAL are not be retrieved. Walker and Jones [34] also

discovered that manual truncation is seldom used by users as it requires certain experience

and skills. Therefore, the use of manual word conflation in information retrieval systems

and OPACs demands qualified intermediaries who can assist users to conquer the

aforementioned challenges [43].

Automated word conflation is performed through computer programs known as stemmers,

that remove morphological variants of a word to form stems [1]. The next diagram

demonstrates the variety of types of conflation strategies and stemmers.

FIGURE 1-1: WORD CONFLATION METHODS [2]

Conflation

Methods

Manual

Successor

Variety

Table

Lookup

Statistical

(N-Gram)

Automatic

(Stemmers)

Affix

Removal

Longest

Match

Simple Removal

(Iterative)

2.3. STEMMING ALGORITHMS

User search words needs to be matched up to the terms in databases or documents for

effective retrieval of the required information [11]. Query words and those in the files must

fulfill the criteria for retrieval; or ranked, where the documents with the better relevance to

the request are retrieved as outputs. There needs to be a way for deciding whether or not a

provided query term matches to a given word in a document. The most straightforward is

to permit exact matching only; for example, “business” would match itself only and a

15

document that contained “business” but “Business” would not be recognized as a match.

Another simple correspondence method is case-insensitive exact match [18].

Stemming is also a correlation process, whereby search terms and words stored in a

document are reduced to a common root word by removing affixes. Words relate if they

have a common root. For example, “READS” might be stemmed to “READ”, which would

match “READ”, “READING”, and of course “READS”. Each word thus has a set of

conflations, that is, words that have the same stem [18].

The features of stemming algorithms differ considerably depending on whether stem

dictionary and suffix lists are being utilized, and also on the aim for which the stemmer is

developed [1], [17]. However, most of the stemmers are based on specific rules and

techniques [35]. These techniques include a removal of the single longest matching suffix

or the iterative elimination of numerous suffixes. The reason behind iterative strategy is the

fact that suffixes are affixed to stems one after the other. In this approach, suffixes are

removed from the stem in the order of their derivational rules. The suffix removal begins

from the end of the word and performing in the direction of the starting. For example, if we

look at a word COLOURFULNESS, the suffix -NESS is taken off in the very first iteration

and re-considering COLOURFUL, the suffix -FUL is removed leaving behind COLOUR

as a last stem. The affix removal is accomplished according to the class order that is defined

by the developer. Different techniques for instance the one recommended by [36] could

also present, which are usually iterative although have no their endings classified. The

application of an iterative method has also its own challenge [29]; the need of analyzing

huge quantity of suffixes along with their own sequential relationship, which is a tough

activity and construction of list of sequential class.

Porter used iterative stripping approach, which operated in five stages, using five different

classes of 60 suffixes to recreate the inflectional and derivational practice of terms.

Normally, a number of the rules tend not to remove the suffix however they recode endings

of the stem to new endings. For example, if we eliminate the suffix “-ING” from

“DEPORTING” and “-ION” from “DEPORTATION”, it provides us with “DEPORT” and

“DEPORTAT” that happen to be distinct stems. However, making use of the recoding rule

that converts endings from “-RTAT” to “-RT,” both words are conflated to exact same stem

“DEPORT” [6].

16

The longest match strategy removes the lengthiest suffix feasible [7], [17]. For example, if

we take the same word COLOURFULNESS, the suffixes attached to the word are: -NESS,

-FUL, and FULNESS. Consequently, the algorithm deletes -FULNESS in the term. The

challenge of employing longest match method in comparison to iterative method consist of

the need to have most feasible combinations of affixes, processing space and memory and

storage space required, and the modification of affix while concatenating [18].

There is also other kind of stemming algorithms classification, context-free or context-

sensitive stemmers [7], [16], [17], [18]. Context is related to any sort of conduct which can

be linked to the leftover stem and usage of the suffix [37]. Not any restriction is applied on

the stem and therefore no extra procedures are needed to examine restrictions in context-

free algorithms. However, the majority of stemming researches [1], [6], [30] suggested that

much better output could be attained by incorporating restrictions to stripping procedures,

which can be, applying context-sensitive conditions, that are generally language dependent

[17]. Context sensitive rules identify certain circumstances by which each suffix could be

removed from an input word [7]. Savoy [30] discusses three common kinds of restrictions:

quantitative, qualitative and recoding rule.

“In quantitative constraints, minimum length for the remaining stem is set when a suffix is

removed. This helps not to remove ending from a stem in which the ending is in the suffix

list but actually not a suffix for that stem. For example, for the word ABILITY and suffix

ABILITY, as the remaining stem must not be zero, the suffix -ABILITY will not be stripped

from the word.” Qualitative constraints determine situations to be fulfilled by ending of the

remaining stem. For instance, remove the suffix “-ize” if the remaining stem does not end

with “e”. In this instance, removing “-ize” from “seize” is prohibited [30].

Correcting and modifying spelling rules need to be applied to conflate the terms to precise

stem [3]. To this end, a recoding rule that transforms MxN MyN, where M and N define

the context transformation, while X being input string, and Y being the transformation

string must be used [3], [18]. Stemming algorithms usually range from poor stemmers that

remove just plural markers to sophisticated ones that deletes suffixes, infixes and prefixes.

Stemming algorithms nowadays are inspired by the techniques used by popular English

stemmers developed by Lovins and Porter. They are considered as pioneers and foundations

for the majority of suffix removal stemming algorithms. Lovins algorithm was designed in

longest match approach, and it works by using a list of 260 endings arranged in decreasing

17

order of suffix length [1]. As an illustration, a term PRIVATIZATION can be stemmed to

PRIVAT if the suffix -IZATION was incorporated in the suffix dictionary. Once a suffix

is taken off, the remaining stem is compared to one of the 34 recoding rules to take into

account spelling exceptions. The recoding rules determine, for example, the treatment of a

suffix preceded by double consonants such as TRAVELLING to TRAVEL, or minimal

stem length has to be maintained, for example, the removal of ING from DOING but not

from BRING etc. The challenge in longest match strategy is having a very significant affix

list: both simple suffixes and the concatenated ones. This demands storage spaces and

collection and processing the affix list [3], [15], [18].

Several alternative solutions are already suggested to deal with issues of stemming. The

problem of stop words is likewise one more problem that must be discussed with regards

to retrieval effectiveness [17]. Stop words removal in retrieval process, offers increase in

performance by minimizing storage need and increasing the matching speed of a query with

index terms of a document [30]. Thus, stop word compilation is crucial in developing

algorithms for stemming words in a language [16], [17]. These words might be collected

either by sorting a words of a corpus and by selecting based upon word occurrence [6] or

collecting by applying the linguistic knowledge of the language which is much more

successful one [1], [2], [3], [15], [16], [17]. Salton [4] encourages choice according to term

frequency by saying that the frequency characteristics of terms in the documents of a

selection have been used as signals of term importance for content analysis and indexing

purpose.

Stemming algorithms are categorized as Affix Removal (Rule-based), Dictionary-based

(Table Lookup), Successor Variety, and Statistical (N-gram) based on the development

strategy applied [3].

2.3.1. AFFIX REMOVAL ALGORITHMS

Rule based strategy is solely reliant on the morphological behavior of the particular

language [2], [7]. In this method, the algorithm deletes affixes from terms resulting in the

stem. Occasionally, the output stem is recoded. Most popular stemmers of this kind

presently being used are iterative and longest match stemmers. The longest match stemmer

was initially developed by [1] and followed by [26]. An iterative stemmers reported by [6]

and [27], remove the basic suffixes iteratively and continue repeatedly until no more affixes

18

can be removed. Despite the removal of all affixes, stems could probably be not effectively

conflated.

Rule based Iterative method is a broadly employed stemming approach and this approach

was first presented by [6], [16], [18]. The Porter English stemming algorithm removes

suffixes from a given word iteratively, resulting in its stem. Despite the fact that the iterative

technique possesses its own disadvantages, it is the widely accepted for its higher accuracy

and storage consumption [18].

2.3.2. DICTIONARY-BASED TECHNIQUE

As stated in [38], developing an extremely large dictionary for storing all words in

documents along with their respective inflectional and derivational variations is a

foundation for a Table lookup strategy. The dictionary in this technique is expected to

include stems, roots, and affixation. There shall be only one unique entry per each word in

a look up table. As an example, PUMPING, PUMPED and PUMPER are words to be

stemmed to PUMP. The stemming process is conducted manually, where the stems are

identified for each term and kept in organized form for instance table [16], [18].

Table lookup approach arranges all words in a sorted alphabetical list with their respective

variant forms [2], [18]. During stemming a word, the table is queried to discover an

equivalent variation of a term. If a related variant of the query word is found, the connection

root is provided as output. Query words and indexes might then be stemmed by way of

table look up [16]. A hash table or binary lookup list can be utilized to improve the search.

Despite the fact that this technique results in precise outputs, it has problems such as

dictionary maintenance; to maintain with a constantly changing language, and this is really

quite a challenge [17], [18]. In addition to the construction of the dictionary, this also needs

frequent upgrading and also storage space is yet another issue and as well required

processing duration for retrieval of data is usually a concern in this technique [18].

The primary advantage of this approach is the generation of correct stems [16]. The

limitation of this method is, it retrieves only words defined and stored in the lookup table.

Storage space for the dictionary is likely to increase as the corpus increases, which make

the retrieval process inefficient and slower [18].

19

2.3.3. SUCCESSOR VARIETY

According to Hafer [25], the successor variety of a string is the number of various

characters that follow it in words in some body of text. The successor variety of substrings

of a word reduces as more characters are included till a segment boundary is attained.

Stemmers of this kind are dependent on work in structural linguistics that attempts to

determine word and morpheme boundaries based upon the distribution of phonemes in a

large text corpus [17]. Stemming based on this strategy makes use of letters instead of

phonemes, and a body of text in place of phonemically transcribed words. It reads the word

to be stemmed and finds out the cut point where the successor variety raises sharply [15],

[16]. Many variations are feasible, which includes: cut-off, peak and plateau, complete

word and entropy. The successor variety algorithm has the benefit of avoiding the need of

affix removal rules that are based on the morphological property of the language [2].

2.3.4. STATISTICAL APPROACH

This technique is a string similarity method to word conflation. It uses similarity measures

depending on the number of n-grams in common rather than words, then applies clustering

techniques. N-gram technique involves statistical methods whereby, through a process of

inference and based on a corpus, rules are formulated regarding word formation. Some of

the methodologies adopted are N-gram [39] and Hidden Markov Models (HMM) [40].

Developing stemmer based on HMM is also realized using N-gram technique [41]. This

strategy doesn’t require a prior linguistic knowledge or a manually developed training data.

Rather, it utilizes unsupervised training that can be executed at indexing time. Jinxi and W.

Bruce [42] recommended a method which allows correcting “rude” stemming results based

on the statistical properties of a corpus utilized. The fundamental concept is to produce

equivalence classes for words with a classical stemmer and then “separate back” some

conflated words based on their co-occurrence in the corpora [16]. N-gram technique does

not need any kind of linguistic knowledge at all, being completely independent of the

morphological behavior of the language [2], [16].

2.4. EVALUATION METHODS FOR STEMMERS

As discussed in [7], [14], [15], [16], [17] and [18], there are different methods to measure

the accuracy of stemmers. The manual method, vocabulary reduction and Paice’s method

are known stemmer performance analysis approaches. In the manual evaluation technique,

an individual that makes a decision on the accurate stem for each word executes the

20

assessment. We have three evaluation parameters: the number of correctly stemmed words;

the number of over stemmed words; and the number of under stemmed words. Among the

benefits of stemmers is to reduce the size of the dictionary for indexing needs. The

dictionary compression is attained by dividing the number of terms in the text by the

number of stems produced, eliminating duplications.

We can also evaluate stemmers using Paice’s method which is based on error counting [46].

In this technique, measures of under stemming and over stemming decide precisely how

great a stemmer is beyond retrieval context. In Paice’s approach, three measurements are

applied so as to make a qualitative contrast among various stemmers: the over stemming

index (OI); the under stemming index (UI); and the stemming weight (SW). This technique

needs a word sampling, without any repetitions, divided into conceptual groups where

terms are semantically and morphologically associated. The SW is provided by the ratio

OI/UI. Paice has compared several English stemming algorithms in isolation from the

context of an IR system and he did not use the conventional precision/recall variables, an

ideal stemmer should stem all words in a group to the identical stem. If a stemmed group

consists of in excess of one distinct stem, the stemmer has produced under stemming errors.

In an IR system, this refers to a negative effect on recall. If a stem of a certain group also

happens in various other stemmed groups, the stemmer has produced over stemming errors,

which decrease precision. A good stemmer should thus generate as few under and over

stemming errors as possible.

2.5. RELATED WORKS

2.5.1. STEMMING ALGORITHMS FOR FOREIGN LANGUAGES

Stemming algorithms have also been designed for several languages up to now which

includes English by Lovins [1], Frakes [3], Porter [6], Dawson [26], Paice [27] and Lennon

[35]; French by Savoy [30], Greek by Kalamboukis [44], Slovene by Popovic [43], Arabic

by Khoja [32] and a number of other languages.

2.5.1.1. ENGLISH STEMMING ALGORITHMS

LOVINS STEMMING ALGORITHM

The first popular and effective stemmer was proposed in 1968 by Lovins [1]. This stemmer

performs a lookup on a table of 294 endings, 29 conditions and 35 transformation rules.

The stemmer is a context-sensitive and works on a longest match first principle. A word is

21

stemmed if an ending with a satisfying condition is found. A suitable transformation rule

is applied next, its aim being to deal with doubled consonants and irregular plurals.

Even if the stemmer was innovative at the time, it has the problematic task of trying to

address two areas (IR and Linguistics) and cannot do well at either. The approach does not

give good results with linguistics, as it is not complex enough to stem many suffixes due to

absence of complete list of suffixes in the rule. There were also problems regarding the

reformation of words. The stemming process also uses recoding rules to reform the stems

into words to ensure they match stems of other similar meaning words. The major issue

with this process is that it is highly unreliable and recurrently fails to form words from the

stems, or matches the stems of like meaning words. The stemmer does not satisfy from the

IR or Linguistic viewpoint either, as its large rule set and its recoding stage affect its speed

of execution. The Lovins stemmer removes a maximum of one suffix from a word, due to

its nature as single pass algorithm. It used a list of about 250 different suffixes, and removes

the longest suffix attached to the word, ensuring that the stem after the suffix has been

removed is always at least 3 characters long.

DAWSON STEMMING ALGORITHM

Dawson stemmer is an extended version of the Lovins stemmer except that it covers a much

more comprehensive list of about 1200 suffixes [26]. Similar to Lovins’ stemmer, this

stemmer is also a single pass stemmer and hence is very fast. The suffixes are stored and

arranged in the reverse order indexed by their length and last letter. In fact, they are

organized as a set of branched character trees for rapid access. Dawson did not use recoding

technique in his algorithm to handle stems and instead used an extension of the partial

matching procedure also defined within in Lovins stemmer. The basic principle of

Dawson’s algorithm is that if two stems match up to a certain number of characters and the

remaining characters of each stem belong to the same stem ending class, then two stems

are of the same form. The advantage is that it covers more suffixes than Lovins and is fast

in execution. The disadvantage is that it’s very complex and lacks a standard reusable

implementation.

PORTER STEMMING ALGORITHM

The Porter stemmer is one of the most popular stemmers today, which is proposed in 1980

[6]. The stemmer is based on the idea that the suffixes in the English language (about 1200)

are mostly made up of a combination of smaller and simpler suffixes. The stemmer has five

22

steps; and within each step, rules are applied until one of them passes the conditions. If a

rule is accepted and meets the condition, the suffix is removed accordingly and the next

step is performed. This process continues for all five classes sequentially, the resultant stem

being returned by the stemmer after control has been passed from final class, step five. For

example, such a condition may be the number of vowel characters, which are followed by

a consonant character in the stem (measure), must be greater than one for the rule to be

applied.

As stated in the article, the aim for the development of the stemmer was to improve the

performance of IR. The Porter algorithm consists of a sets of condition rules. The conditions

are divided into 3 classes; these are conditions on the stem, condition of the suffix and

conditions on the rules. Porter’s algorithm uses a dictionary of about 60 suffixes and has

only few context-sensitive and recoding rules, and therefore is economical in storage and

computing time and is very easy to comprehend.

PAICE/HUSK STEMMING ALGORITHM

The Paice/Husk stemmer is an iterative algorithm with one table containing about 120 rules

indexed by the last letter of a suffix [27]. The stemmer uses a separate rule file, which is

first read into an array or list. This file is divided into a series of sections, each section

corresponding to a letter of the alphabet. The section for a given letter, say “e”, contains

the rules for all endings with “e”, the sections being ordered alphabetically. An index can

thus be built, leading from the last letter of the word to be stemmed to the first rule for that

letter. During word processing, the stemmer takes its last letter and uses the index to find

the first rule for that letter. If the rule matches, then it is applied to the word; and if not

accepted, the rule index is incremented by one and the next rule is applied. However, if the

first letter of the next rule does not match with the last letter of the word, this indicates that

no ending can be stripped, so the process ends. Once a rule has been found to match, it is

not applied at once, but must first be checked to confirm that it would leave an acceptable

stem. When a rule is applied to a word, this usually means that the ending of the word is

removed or replaced. The advantage is that it’s a simple form and each iteration taking care

of both deletion and replacement as per the rule is applied. The drawback is that it’s a very

heavy stemmer and over stemming may occur.

23

KROVETZ STEMMING ALGORITHM

The Krovetz stemmer was developed by Bob Krovetz, at the University of Massachusetts,

in 1993 [45]. It is quite a light stemmer as it makes use of inflectional morphology. The

stemmer effectively and accurately removes inflectional suffixes in three steps, the

conversion of a plural to its single form (e.g. ‘-ies’, ‘-es’, ‘-s’), the conversion of past to

present tense (e.g. ‘-ed’), and the removal of ‘-ing’. The transformation process firstly

removes the suffix, and then checks in a dictionary for any recoding, and finally returns the

stem to the input word.

2.5.1.2. FRENCH STEMMING ALGORITHM

According to Savoy [30], French is an inflective language and has a number of irregularities

in morphology and orthography. Even the application of the weakest English stemmer for

the French language will require a comprehensive suffix dictionary of about 3,000

inflectional suffixes. French terms also have differences between linguistic and semantic

meanings. According to the paper, the stemming procedure for French texts consists of two

stages:

 Morphological analysis of terms;

 Removal of derivational suffixes according to the grammatical categories.

The morphological analysis requires a dictionary file and a declension file. In dictionary

file, each term is associated with a certain declension number, gender and grammatical

category. For example, the term ROBUSTE (robust) is characterized as adjective, which

uses declension number five and the term is masculine in singular form. Declension number

five can be found in the declension file which states that ending -s will be removed if the

term is in masculine or feminine and in plural form. All declension forms are organized in

a truncated digital search tree which determines that the morphological analysis starts from

the end of a word. Apart from removing inflectional suffixes, the morphological analysis

evaluates the past participle and returns the infinitive form of the verb. For example, the

term NEUVES (new) will be processed in following way: first of all, three last characters

in reverse order i. e. -SEV will be removed from the term (one character at a time) and after

that character, F will be added to the remaining stem NEU forming the stem NEUF. The

derivational process is similar to Porter’s iterative affix removal approach.

As stated in the paper, derivational suffixes can be determined by using a suffix list based

on four tables which correspond to four grammatical categories: nouns, adjectives, verbs

24

and adverbs. Each grammatical category covers special rules and several restrictions

regarding gender and/or the remaining stem length. When the grammatical category and

suffix of the term are determined, it is possible to find a term’s stem and the grammatical

category of the corresponding stem. For example, for the adjective VOLCANIQUE

(volcanic) suffix -IQUE will be removed leaving the stem VOLCAN (volcano) which is a

noun.

According to the researcher, the French stemmer has been evaluated using three basic tests.

The first experiment covered weak stemming which removed inflectional suffixes (plurals,

past participle) from 50 test terms. According to the result, all 50 terms were stemmed

correctly. The second test was dealing with prefix removal and the success rate was also

high. Finally, the third test which evaluated suffix removal procedure from terms

containing only derivational suffixes also revealed high ratio of correct results. It was also

observed that the use of grammatical categories can decrease the number of over stemmed

terms.

2.5.1.3. GREEK STEMMING ALGORITHM

Suffix removal stemmer for Greek was one of the first attempts to construct a stemming

algorithm for the language which is based on non-Latin character set [44]. The grammatical

structure of Greek language covers a rich inflectional system which includes 41 forms of

suffixes. Nouns in the Greek language have four different cases and the declension is

carried out according to 41 categories of nouns, e.g., 14 for the masculine, 14 for the

feminine and 13 for neuter. This iterative algorithm was based on two-stage suffix removal

procedure: analysis and removal of inflectional suffixes; removal of derivational suffixes

which correspond to their grammatical categories.

The evaluation based on two small test collections covering documents in medicine and

computing as well as analysis of user enquiries revealed that the majority of errors were

caused by under stemming. Although, the algorithm has not been implemented into any of

Greek databases and/or tested using large document collections, the initial evaluation

showed that the stemmer produced 90% correct stems.

2.5.2. STEMMING ALGORITHMS FOR LOCAL LANGUAGES

Researches in the areas of stemming for Ethiopian languages are presented as follows.

25

2.5.2.1. STEMMER FOR AMHARIC

The first Amharic stemming algorithm that conflates words for information retrieval was

developed by Nega Alemayehu and Peter Willett [7]. Their work was one of the earliest

main works in Amharic NLP researches. They used a previous work for Slovene [43] and

developed stemming algorithm for Amharic in similar way.

As stated in [7], the stemmer was iterative that removes prefixes and suffixes and also

considered letter inconsistency and reiterative verb forms. The same researcher explains

that algorithm first identifies a set of stop-words and then a set of affixes associated with

the remaining content-bearing words. The researchers have used the characteristics of the

resulting affixes which used to guide the development of the stemmer. The stemmer

removes affixes by iterative procedures that employ a minimum stem length, recoding and

context sensitive rules, with prefixes being removed before suffixes. Once the stem of the

word is obtained, the root is obtained by stripping all the remaining vowels from it.

As mentioned by this researcher, the stemmer uses a context-sensitive iterative procedure

that removes both prefixes and suffixes. The performance of the stemmer was measured on

a sample data of 1221 words. The result of the experiment shows that the stemmer

performed at an accuracy of 95.9%.

Following the first Amharic stemmer work, Atelach and Lars developed another Amharic

stemmer which is based on table lookup strategy [14]. They have presented the design and

development of an Amharic stemmer which reduces words to their citation forms for the

purpose of dictionary lookup in Cross Lingual Information Retrieval systems. The stemmer

finds all possible segmentations of a given word according to the morphological rules of

the language and then selects the most likely prefix and suffix for the word based on corpus

statistics. It removes the prefix and suffix and then attempts to look up the remaining stem

(or alternatively, some morphologically driven variants of it) in the stem dictionary to check

that it is a potential stem of the word. The frequency and distribution of prefixes and

suffixes over Amharic words are based on a statistical analysis of a 3.5 million word

Amharic news corpus and some old-fashioned words from Amharic fiction.

As discussed in [14], the stemmer first creates a list consisting of all possible segmentations

of the word that is to be stemmed. In a second step, each such segmentation is then verified

by matching each candidate stem against the machine-readable dictionary. If no stem

matches the dictionary, the stemmer will modify the stem and re-do the matching. If more

26

than one stem found, the most related stem is chosen after disambiguating between the

potential stems based on statistical and other properties of the stems. In the case of one

exact match in the dictionary, that stem will be presented as the output of the stemmer. This

stemmer had an accuracy of 76% on news corpus and 60% on old-fashioned words when

evaluated on a limited text consisting of 1503 and 470 words respectively.

2.5.2.2. STEMMER FOR AFAAN OROMO

The first rule based Afaan Oromo stemmer was developed by M. Wakshum [29]. This

stemmer used suffix table in combination with rules that strips off suffix from a given word

by looking up the longest match suffix in the suffix list. 342 suffixes were compiled

automatically by counting and sorting the most frequent endings. Other linguistically valid

suffixes were also included manually. The stemmer finds the longest suffixes that match

the end of a given word and remove. This stemmer uses the longest-match, context-

sensitive approach and rules that remove prefix and suffix. The stemmer was evaluated by

counting stemming errors and also reduction of dictionary size. It performed an accuracy

of 92.52% based on the test data of 1061 words.

Another Afaan Oromo stemmer was developed by D. Tesfaye and E. Abebe [15] to improve

weakness of stemmer developed by M. Wakshum which had no rules to stem irregular and

duplicated words.

As stated in [15], the stemmer was developed using hybrid approach (combining both Affix

removal and n-gram techniques) and is based on a series of steps that removes a certain

type of affix by way of substitution rules and suffix removal. These rules apply for specific

conditions, for example, the resulting stem must have a certain minimal length. Most of the

rules have a certain condition based on the measure (number of vowel-consonant sequences

that present in the output stem). This condition must prevent that letters which look like a

suffix but are just part of the stem will be removed.

The researcher discussed that the stemmer was tested on set of 5000 words. According to

the paper, the corpus from which the stemmer developed was completely different from the

test data so as to predict the performance of the stemmer in real world data. The output

from the stemmer indicates, out of 2458 words 90 words (3.66 %) were under stemmed and

15 words (0.61 %) were over stemmed. Overall, this stemmer generated 105 words (4.27

%) stemming error. As a result, the accuracy of the stemmer was 95.73%.

27

2.5.2.3. STEMMER FOR TIGRIGNA

The first iterative Tigrigna stemmer was designed by G. Berhe in 2001 [12]. This stemmer

was developed based on iterative procedure and uses context-sensitive rules that remove

prefix, suffix, prefix-suffix pair and reduplication of single and double letters. The

algorithm works in iterative approach but when it finds two affixes that match with the

word, it removes the longest one.

As discussed in [12], the stemmer used five step rules for the purpose of removing affixes.

The first step takes the word to be stemmed as an input and removes double letter

reduplication. The second step removes prefix-suffix pair. This step takes the output of the

first step as an input and checks if the words contain a match with any prefix-suffix pair. If

the word contains a match and the remaining string has a length greater than the minimum

length, then the prefix and suffix are removed from a word. The third step removes prefixes

and takes the output of prefix-suffix stripping. In removing a prefix, checking for match in

the prefix list and counting length of the remaining string is done. The fourth step removes

suffixes by accepting the output from the previous stem and checks if the word contains

any match from the list of suffixes. If the word has a match and the remaining string is

greater than the minimum length, the suffix is removed from the word. In the last step, the

algorithm stems reduplication of a single letter. This algorithm has recoding rule that is

applied after each step is applied for checking some spelling exceptions and making

readjustment. The accuracy of the stemmer was tested based on error counting technique

and the result showed an accuracy of 84% and brought a dictionary reduction of 32.40%.

Another Tigrigna stemmer was developed by Y. Fiseha in 2011 [16]. The researcher has

introduced the algorithm in order to minimize the gap of the existing algorithm by G. Berhe.

and to create a more effective Tigrigna stemmer. Based on the previous research finding of

G. Berhe, the researcher created a system that removes the affixes of the Tigrigna words in

a relatively larger corpus by using specific grammatical rules to improve the effectiveness

of the stemmer. However, this algorithm is limited to handle only prefixes and suffixes.

Reduplication, compounding and irregular words were not handled in this research

according to the paper.

The researcher further discussed that based on the experiments carried out for this study,

the algorithm stems the words with an accuracy rate of 86.1%. As discussed by the

researcher, context-sensitive rules were not included in the stemmer due to lack of common

28

context-sensitive rules that work commonly for a group of words. The stemmer also does

not give similar accuracy on different datasets.

2.5.2.4. STEMMER FOR WOLAYTTA

The first attempt to develop stemmer for Wolaytta language was conducted by L. Lessa

[17]. This Wolaytta stemmer is a rule based iterative stemmer which removes each base

suffix one by one iteratively. This stemmer is also a context sensitive.

The researcher employed a semi-automatic and semi-manual means to prepare the potential

suffixes. The stemmer first gets a word to be stemmed then checks if a suffix from the list

is attached to the word. Next, these suffixes are iteratively stripped from the word and after

application of necessary condition, the final word is considered as a stem. The stemmer

was evaluated in a sample of 884 words and the performance registered was 86.9%.

2.5.2.5. STEMMER FOR SILT’E

The first stemmer for Silt’e language was developed by M. Kedir in 2012 [18]. According

to the study, the stemmer contains prefix striping, suffix stripping and letter reduplication

stripping modules.

The researcher indicated that the stemmer implemented is the iterative but longest match

first and the lists of affixes are checked against the word. It removes affixes iteratively until

the entire affixes are removed. In the stemmer, three steps were used for the purpose of

removing affixes. The first step removes prefixes. In the second step, the removal of suffix

is done and in the third step reduplication of letters is removed from the word. The stemmer

was tested on a data set of 1486 words. The stemmer performed at accuracy of 85.71% and

reduced dictionary size by 34.99%.

2.5.2.6. RESEARCH GAP

From the literature review, the researcher observed that stemming algorithms have been

designed to different local languages. The languages in which stemming researches

conducted include Amharic [7], [14], Afaan Oromo [15], [29], Tigrigna [12], [16],

Wolaytta [17], Silt’e [18] and few others. However, there is no any research carried out to

design stemming algorithm for Kambaata language text. Thus, the researcher used this

opportunity to do a research on designing a rule based stemming algorithm for Kambaata

words.

29

CHAPTER THREE

MORPHOLOGY OF KAMBAATA LANGUAGE

3.1. OVERVIEW OF THE KAMBAATA LANGUAGE

As mentioned below, Kambaata has its own writing system and uses both Ethiopic and

Latin script; the latter being used primarily. Since Emperor Haile Selassie (head of

Ethiopian government) started a literacy campaign in 1955 known as ‘Yefidel Serawit” in

Amharic, which literally means ‘an alphabet army’, Ge’ez-based Ethiopic writing system

was introduced into the languages spoken all over the country including Kambaata [67].

The literacy campaign lasted until 1991 when the current central government came to

power; instead of continuing the same campaign, the new government started to allow the

speakers of non-Semitic languages to develop their own writing systems. Accordingly,

Latin-based alphabet system was designed in 1992 (1984/1985 E.C.) to be used by

Kambaata language, but the literacy rate at present still seems to be low and the language

has been poorly documented [20], [21].

3.2. THE WITING SYSTEM OF KAMBAATA LANGUAGE

As stated in [19], both the Latin script and Ethiopic also known as Ge’ez script are used for

writing Kambaata texts. For instance, the Bible New Testament and part of the Old

Testament is written in Ge’ez script. However, according to linguists and the researcher’s

practical observation and experience, the official writing system (orthography) taught

currently in primary and secondary schools in the Zone is Latin-based and there is some

deviation from the International Phonetic Alphabet (IPA) convention. For example, the

word Kambata is written as Kambaata where double letters “aa” indicate the length.

Most Kambaata languages publications as of today belong to religious and educational

domains. After a Latin-based orthography had been designed in 1992, school books for all

subjects were developed in Kambaata language for primary school (grades 1-6) and the

books for Kambaata lessons (Kambaatissata: Rosaanchi Maxaafa) for grades 7 and 8 at the

start. Recently, the language is medium of instruction in primary schools (grades 1-4),

taught as a subject in junior and secondary schools and preparatory level (or grades 5 – 11)

and curriculum is under development for grade 12. As stated in [19], Latin based

orthographic rules of Kambaata were written with some explanations and examples for the

first time in 1992.

30

The researcher also discussed that for many of the Kambaata speakers, reading and writing

in their mother tongue is restricted to the context of primary and junior high school as

Amharic is dominant official writing language in work places both at country and regional

level. Although, formally educated young generation has attended the Kambaata classes in

school, the Kambaata language has not yet become part of the “linguistic landscape”. The

national language, Amharic is still the preferred language in governmental institutions,

religious organizations, announcements, traffic signs, and notice boards [19].

3.2.1. ALPHABETS

Kambaata orthography is Latin-based. As stated in [19], some consonant phonemes are

written by more than one series of characters: “’”, “s”, “y” and “h”. Kambaata has 28

consonants and five short vowels: “a”, “i”, “e”, “u”, “o” and their long counterparts “aa”,

“ii”, “ee”, “uu” and “oo”.

As discussed by [19], the official orthography of Kambaata deviates from the IPA

conventions as follows: “ph” = p’, “x” = t’, “q” = k’, “j” = dʒ, “c” = tʃ’, “ch” = tʃ, “sh” =

ʃ, “ny” = ɲ, “zh” = ʒ, “’” = Ɂ, “’l” = lʼ and “’r” = rʼ. Length is specified by double vowel

letters and double consonant represents stress in speech, for example: “chch” = tʃ:, “aa” =

a:, “bb” = b:, and “shsh” = ʃ:. By convention, the second consonant of a glottal stop-

sonorant cluster is written as double, although the cluster only consists of two phonemes,

e.g. “’rr” = Ɂr, “’ll” = Ɂl. Consequently, the digraphs “’l” and “’r” are free to be used to

mark glottalised sonorants. Treis [19] also further discussed that word-final unstressed /i/

does not occur orthographically, irrespective of its phonological status [19].

TABLE 3-1: KAMBAATA ALPHABETS AND THEIR ETHIOPIC COUNTERPARTS [49]

Alphabet Amharic

Equivalent

Alphabet Amharic

Equivalent Capital Small Capital Small

A a አ/ዐ O o ኦ/ዖ

B b ብ P p ፕ

C c ጭ PH ph ጵ

CH ch ች Q q ቅ

D d ድ R r ር

E e ኤ/ዔ S s ስ/ሥ

F f ፍ SH sh ሽ

31

G g ግ T t ት

H h ህ/ሕ/ኅ/ኽ TS ts ፅ/ጽ

I i እ/ዕ U u ኡ/ዑ

J j ጅ V v ቭ

K k ክ W w ው

L l ል X x ጥ

M m ም Y y ይ

N n ን Z z ዝ

NY ny ኝ ZH zh ዥ

3.2.1.1. VOWELS

Kambaata orthography has a five-vowels. Vowel length is indicated by double vowels.

Long vowels are bi-phonemic, i.e. combinations of two short vowels.

TABLE 3-2: KAMBAATA VOWELS (SHORT AND LONG) [19]

 Front Central Back

High i, ii u, uu

Mid e, ee o, oo

Low a, aa

Vowel phonemes appear in the middle and end of a word after any consonant. Phonemic

opposition between short “o” and “a” is neutralized only after the approximant “w”.

3.2.1.2. CONSONANTS

Kambaata writing system has 28 consonant graphemes. The consonant graphemes are

presented in Table 3-3. Graphemes that are not indicated inside pointed brackets <…> are

identical to the IPA standard in phonemic and orthographic representation of a phoneme.

Starred graphemes () are exclusively used for writing loanwords [19]. The remaining

graphemes indicated inside pointed brackets are customized for Kambaata orthography.

TABLE 3-3: CONSONANT PHONEMES AND THEIR ORTHOGRAPHIC REPRESENTATION [19]

 Labial Alveolar Palato -

alveolar

Velar Glottal

Stops voiceless <p> t <ch> k (<’>)

voiced b d <j> g

glottalic <ph> <x> <c> <q>

32

Fricatives voiceless f s <sh> h

voiced <v> z <zh>

glottalic <ts>

Nasals m n <ny>

Vibrants plain r

glottalized <’r>

Laterals plain l

glottalized <’l>

Glides w y

3.3. KAMBAATA MORPHOLOGICAL SYSTEM AND WORD

FORMATION

Morphology a discipline of natural language study that deals with the inner composition of

terms and their construction, such as affixation, roots, and pattern properties [47].

According to Spencer [47], morphology is the origin of word variation in natural language

text, with suffixing and prefixing being the most prominent approaches of word variant

formation. Morphology can be divided in two; inflectional or derivational. Inflection is

variation or change of form that words experience to indicate differences of case, gender,

number, tense, person, mood, voice. Inflectional morphology is employed to a given stem

with expected formation. It does not impact the word’s part of speech, such as noun, verb,

etc. Case, gender, number, tense, person, mood, and voice are some good examples of

properties that might be impacted by inflection. Derivational morphology is derivation of

a given term to create diverse term variations from a one stem. In cases like this, the word’s

grammatical as well as syntactic class could possibly be impacted and altered [16].

Usually, terms can have numerous word forms, e.g., the word “waal” (come) can take the

forms “waalleeu” (came) and “waalayyoou” (is coming), usually called inflected forms.

The root is the original form of the word before any transformation process, “waal” in our

case, and it plays an important role in language studies. The root is the form of a word from

which the other forms can be derived using the morphological rules of a language. A

morpheme is the smallest unit of a language that has a meaning and cannot be broken down

further into meaningful or recognizable parts and should impart a function or a meaning to

the word which they are part of. An affix is a morpheme that can be added before (prefix)

33

or after (suffix), or inserted inside (infix) a root or a stem to form new words or meanings

[48]. Morphological behavior of one language is beneficial for several applications in the

field of NLP for instance, stemming, morphological analysis, text summarization, machine

translation, information retrieval and so on.

Kambaata is a rigidly head-final (i.e. word order = left-branching (SOV)) and strictly

suffixing language with a rich nominal and verbal morphology [50]. It is an agglutinative

language, where almost all derivational morphology and all inflectional morphology

involve affixation. It has been emphasized in [50] that Kambaata is exclusively suffixing

language and that there are no prefixes in the language. However, the research is able to

find very few words with prefix affixation as indicated in Chapter four.

Inflectional affixes describe word as stems combined with grammatical markers for things

like person, gender, number, tense, and case. Regarding parts of speech in Kambaata, there

are five open word classes (nouns, verbs, adjectives and ideophones and interjections); and

several closed word classes (pronouns, numerals and quantifiers, demonstratives; hardly

any conjunctions and adverbs) [50]. Ideophones and interjections are morphologically

invariant [19]; prepositions and conjunctions are totally unproductive for IR purpose or

other natural language processing. The same happens for adverbs which are few in number.

Therefore, the discussion of derivational and inflectional morphology concentrates on the

main three parts of speech, namely verbs, nouns and adjectives.

3.3.1. VERB MORPHOLOGY

Kambaata is an exclusively suffixing language and all inflectional morphemes are located

after the verbal stem. A draft of the morpheme structure of a (declarative affirmative) main

verb is given in Table 3-4 and example is provided in section 3.3.1.1 [58].

As stated in [51] and [58], the verbal stem consists of the root and derivational morphemes.

Each affirmative declarative main verb has two subject agreement markers. The first

agreement slot is occupied by the inherited Afro-asiatic subject morphemes; the second slot

contains agreement morphemes. Aspect morphemes are placed in the slot between the

subject agreement positions. As discussed in [58], four aspectual values are distinguished

in main verb paradigms: (i) Imperfective (IPV), (ii) Perfective with a characteristic e-vowel

(PVE), (iii) Perfective with a characteristic o-vowel (PVO), and (iv) Progressive (PROG).

34

Kambaata is primarily an aspect-marking language. Verbs are inflected for aspect (the

primary differentiation of verb forms is between perfective (P) and imperfective (I)

paradigms (some of which are given in (1)), mood (indicative, imperative/jussive, and

preventive), subordination (main vs. subordinate verb) and subject agreement (person,

gender, number and social status of the subject). Verbs are situated at the rightmost end of

the clause [51].

Important distinction between main (final) verbs and subordinate (non-final verbs) in

Kambaata is that main verbs end a sentence, and have the most elaborate inflectional

potential (more distinctions for subject agreement, aspect, mood) while subordinate verbs

are found sentence medially (relative verbs, converbs, purposive verbs, verbal nouns), and

have a reduced inflectional potential (less or no distinctions for subject agreement and

aspect, no mood marking), some are marked for switch-reference [53].

(1) it- eat

I it-aamm I will eat. / I eat habitually. imperfective main verb

P ichch-eemm I ate. e-perfective main verb

P ichch-oomm I ate. o-perfective main verb

I it-an(i) … (I) eating … imperfective SS converb

P ichch(i) … (I) having eaten … perfective SS converb

I it-ani-yan … (I) eating … imperfective DS converb

P ichchi-yan … (I) having eaten … perfective DS converb

3.3.1.1. MORPHOLOGICAL STRUCTURE OF VERBS

TABLE 3-4: STRUCTURE OF A DECLARATIVE AFFIRMATIVE MAIN VERB [54]

Stem:

Root (+

Derivation)

Inflection
(Object Suffix)

(ikke) Subject

Agreement *
Aspect

Subject

Agreement

1SG: -∅

2SG: -t

3M: -∅

3F/PL: -t

3HON: -een

1PL: -n

IPV: -a(a)

PVE: -e(e)

PVO: -

o(o)

PROG: -

ayyoo

1SG: -m(m)

3M: var.

2SG: -nt

3F/PL: (-’V)

3HON: var.

1PL: -m(m)

2PL: -nta(a’u)

1SG: -’e

3M: -s

2SG: -kke

3F: -se

3HON/PL: -ssa

1PL: -nne

35

2PL/HON: -

teen

2PL/HON: -

(kki)’nne

* In the singular, the persons are ordered in an unorthodox way to point out the common

neutralization pattern 1SG=3M and 2SG=3F/PL.

At the right edge: pronominal object suffixes and inactual (“past”) morpheme ikke is added.

“ikke” is used to show something that was habitual in the past. It can be represented by

‘used to’.

e.g. xuudanos ikke xuud-∅-a-no-s ikke

 see-3m-IPV-3m-3mO INACT

‘He used to see him.’

3.3.1.2. ASPECT MARKING ON MAIN VERBS

IMPERFECTIVE (IPV)

Characteristic aspect vowel (between agreement morphemes): a(a)

TABLE 3-5: IMPERFECTIVE MAIN VERB [53]

 -AGR -a(a) -AGR e.g. kul - ‘tell’

 1SG -∅ -aa -m(m) kul-aam(m)

2SG -t -aa -nt kul-taant

3M -∅ -a -no kul-ano

3F/3PL -t -aa (-’V) kul-taa(’u/’a/’)

3HON -een -∅ -no kul-eenno

1PL -n -aa -m(m) kun-naam(m)

2PL/2HON -t-een -a -nta kul-teenanta

The imperfective marks an event as non-completed, either because the event is 1) habitual,

a general truth, 2) carried out or happening at the speech time, in the future from the

perspective of the speech time, or 3) in the future relative to the time of a past reference

event. The IPV is not only used to encode events that are non-completed at the speech time

36

but also at a reference time prior to the speech time, i.e. the imperfective can mark habitual

events in the past [53], [55].

PROGRESSIVE (PROG)

The complete progressive paradigm of the verb kul- ‘tell’ is given in Table 3-6 [55].

TABLE 3-6: PROGRESSIVE MAIN VERB [53]

 -AGR -ayyoo -AGR e.g. kul - ‘tell’

 1SG -∅ -ayyoo -m(m) kul-ayyoom(m)

2SG -t -ayyoo -nt kul-tayyoont

3M -∅ -ayyoo (-’V) kul-ayyoo(’u/’i)

3F/3PL -t -ayyoo (-’V) kul-tayyoo(’u/’i)

3HON -een -ayyoo - mma kul-eenayyoomma

1PL -n -ayyoo -m(m) kun-nayyoom(m)

2PL/2HON -t-een -ayyoo -nta kul-teenayyoonta

The progressive marks a durative event as being in the process of happening at the reference

time (which does not have to be the speech time). Progressive marking encodes iteration

(ub-ayyoo’u ‘he keeps on falling’) with punctual verbs (e.g. ub- ‘fall’) and an incipient

change of state (qeree’rr-ayyoo’u ‘he is growing tall’) with inchoative-stative verbs

(qeraa’rr- ‘be(come) tall’) [53], [55].

PERFECTIVE (PVO)

There are two perfective paradigms: e-form “Simple Perfect” vs. o-form “Present Perfect”

in Kambaata [53], [55].

- Characteristic aspect vowel between agreement morphemes: o(o) (except in 3HON and

2HON/PL).

- Characteristic morphophonological process: palatalization (P) and gemination (G) in

1SG and 3M.

- Overlap perfective/perfect: 3HON and 2PL/HON forms shared with the perfect

paradigm.

- Defectiveness: 1SG and 3M perfective form can only be formed from verb stems ending

in -C (but not -CC) > verb stems in -CC do not distinguish between perfective and

perfect (e.g. barg- ‘add’ > barg-eemm 1SG perfective/perfect).

37

- Neutralization: Distinction between perfective and perfect is neutralized in the

negation.

TABLE 3-7: PERFECTIVE MAIN VERB [53]

 -AGR -o(o) -AGR

e.g. kul - ‘tell’

 1SG (P/G)-∅ -oo -m(m) kull-oom(m)

2SG -t - oo -nt kul-toont

3M (P/G)-∅ - o kull-o

3F/ 3PL -t - oo -(’V) kul-too(’u)

3HON -een -∅ - ma(a’V) kul- eemma(a/u/)

1PL -n - oo- -m(m) kun- noom(m)

2PL/2HON -t-een - ∅ -nta(a’V) kul- teenta(a/u/)

The perfective form is used in texts for sentences which advance the story. The sentences

advancing the story end in true perfective verbs or potential perfective verbs.

PERFECT (PVE)

- Characteristic aspect vowel between agreement morphemes: ee (except in 3HON and

2PL/HON).

- Characteristic morphophonological process: palatalization (P) and gemination (G) in

1SG and 3M.

- Accentuation of the verb form dependent on structure of the stem (except in 3HON and

2PL/HON).

- Overlap perfect/perfective: 3HON and 2PL/HON forms shared with the perfective

paradigm.

TABLE 3-8: PERFECT MAIN VERB [53]

 -AGR -ee -AGR

e.g. kul - ‘tell’

 1SG (P/G)-∅ -ee -m(m) kull-eem(m)

2SG -t - ee -nt kul-teent

3M (P/G)-∅ - ee -(’V) kull-ee(’u)

3F/ 3PL -t - ee -(’V) kul-tee(’u)

3HON -een -∅ - ma(a’V) kul-eemma(a/u/)

1PL -n - ee- -m(m) kun- neem(m)

2PL/2HON -t-een - ∅ -nta(a’V) kul- teenta(a/u/))

38

The perfect is used for processes and actions that are completed but whose ensuing/

resulting state continues to the reference time [53].

3.3.1.3. NEGATION OF VERBS

NEGATION OF MAIN VERBS

Negative imperfective main verbs (3) are merely marked by the addition of a morpheme -

ba’a to the affirmative form (2). The accentual structure of the imperfective verb is not

altered by the additional negative morpheme [20].

(2) Imperfective affirmative

Stem
Subject

agreement
Aspect

Subject

agreement

(Object

suffix)

e.g. xuud-deenanta-s < xuud-teen-a-nta-s

 see-2PL.IPV-3M.OBJ

‘you (PL) see him’

(3) Imperfective negative

Stem
Subject

agreement
Aspect

Subject

agreement

(Object

suffix)
-ba’a

e.g. xuud-deenanta-si-ba’a < xuud-teen-a-nta-s-ba’a

see-2PL.IPV-3M.OBJ-NEG

‘you (PL) do not see him’

Perfective (4) and progressive (5) main verbs share one negative paradigm (6), which is

characterized by a morpheme -im (a marker for non-imperfective aspect) after the first

subject agreement morpheme and by a subsequent negative morpheme -ba(’a). The

negative perfective lacks the second subject agreement marker. Object suffixes occur after

the negative morpheme and trigger the loss of the “glottal appendix”, i.e., before an object

suffix, the negative morpheme is realized as -ba (6) [53], [55].

(4) Perfective affirmative

Stem
Subject

Agreement
Aspect

Subject

Agreement

(Object

suffix)

e.g. xuud-deenta-s < xuud-teen-nta-s

see-2PL.PVE-3M.OBJ

39

‘you (PL) saw him’

(5) Progressive affirmative

Stem
Subject

Agreement
Aspect

Subject

Agreement

(Object

suffix)

e.g. xuud-deenayyoonta-s < xuud- teen-ayyoo-nta-s

see-2PL.PROG-3M.OBJ

‘you (PL) are seeing him’

(6) Perfective [“non-imperfective”] negative

Stem
Subject

Agreement
-im -ba(’a) (Object suffix)

e.g. xuud-deenim-ba-s < xuud- teen-im-ba-s

see-2PL.NIPV-NEG-3M.OBJ

‘you (PL) did not see him; you (PL) are not seeing him’

Kambaata has several unrelated negation morphemes. Apart from the morpheme -ba’a,

whose use for the negation of indicative main verbs was exemplified in (3) and (6), the

morpheme -u’nna serves to negate converbs, the morpheme -ka is applied to negative

jussive verbs, and the morpheme -oot signals negative imperative verbs [53], [55].

NEGATION OF RELATIVE VERBS

Relative verbs are marked as negative by the morpheme -umb, which does not seem to be

related to the aforementioned negative morphemes. The negative RVs, whose paradigm is

presented in Table 3-9, are not derived from negative main verb forms [20].

TABLE 3-9: PARADIGM OF NEGATIVE RELATIVE VERB FORMS

Person Morpheme e.g. kul - ‘tell’

1SG and 3M -Ø-umb-u kul - umb-u

2SG and 3F/PL -t-umb-u kul - t-umb-u

3HON -een-umb-u kul - een-umb-u

1PL -n-umb-u kul -n-umb-u

2PL/HON -teen-umb-u kul - teen-umb-u

OTHER NEGATION FORMS

TABLE 3-10: OTHER NEGATION SUFFIXES OF VERBS IN KAMBAATA

40

Person Morpheme e.g. hujat - ‘work’ Translation

3M -u’nna

hujat- u’nna
‘…(He) before/without

working’

1SG -ba(’a) hujat -aam-ba’a ‘I don’t work’

3M -ka hujat - un-ka ‘Don’t let him work’

2SG -toot hujat -toot ‘Don’t do(work)’

2PL -een-oochch-e hujat-een-oochch-e ‘Don’t do(work)’

In Kambaata languages, a considerable number of different negative morphemes are found,

because different clause types require different negation strategies. An overview of the

forms and functions of all negative morphemes discussed in the preceding sections is given

in Table 3-11 [59].

TABLE 3-11: CLAUSAL NEGATION IN KAMBAATA SUMMARIZED

Standard

(ST)

Existential

(EX)

Imperative

(IMP)
Jussive (JUS) Converb (CVB)

Relative

(REL)

-ba(’a) -ba(’a)
-oot; -

oochch
-(n)ka

-u’nna;

-u’nnaan;

-u’nnaachch

-um(-)b-

3.3.1.4. DERIVATION

Unlike other word categories, derivation of verbs from other part of speech is not common

[62]. By removing the adjectival suffixes, verbs can be derived from adjectives as shown

in Table 3-12 [19].

TABLE 3-12: DERIVED VERBS AND THE CORRESPONDING ADJECTIVES

MORPHEME ADJECTIVE TRANSLATION DERIVED

VERB

TRANSLATION

-a(-ta) abb-a(-ta) big; much, many abb- be(come) big

-a(-ta) annann-a(-ta) different annann- be(come) different

-aan-ch-u(-ta) ros-aan-ch-u(-ta) student ros- learn

-aan-ch-u(-ta) ros-is-aan-ch-u(-ta) teacher ros-is- teach

-im-a(-ta) hoog-im-a(-ta) weak, tired hoog- be(come) tired

-all-a(-ta) baab-allu(-ta) frightened baab be(come) frightened

41

-eem-a(-ta) biddiqq-eem-a(-ta) flat, even, spread

out

biddiqq y- be(come) flat, even,

be spread out

3.3.1.5. INFLECTIONAL SUFFIXES FOR A VERB IN

KAMBAATA

For general verb inflection, the researcher demonstrated some possible suffixes for a single

verb “kul (tell)” but the list might not be exhaustive as the language has very rich

morphology [20], [54], [55], [56], [57].

Kambaata verb inflection for a verb “Kul” ‘tell’ within different tense aspect mood is

provided in Appendix VI (Table VI-1) and exhaustive list (as much as possible) is provided

in Appendix VII.

Purposive: is subordinate verb form used in purpose clauses. SS purposive are used in

questions about one’s intentions or plans [55]. For other forms of negations, examples are

given using the stem “kul” ‘tell’ in Table 3-13.

TABLE 3-13: OTHER FORMS OF NEGATION

Person Morpheme e.g. kul - ‘tell’

3M -u’nna kul- u’nna

3M -ka kul - un-ka

2SG -toot kul -toot

Other inflectional forms of the verb can be represented with equivalent compound word

with other suffixes.

TABLE 3-14: OTHER INFLECTIONAL FORMS

Word suffix Equivalent compound word New suffix

kullebe -l-ebe kamme-kulle -le

kullela -lela hikkada-kulle -le

kultaada -taada kulii-hassooda -ii

3.3.2. NOUN MORPHOLOGY

Kambaata has fairly rich nominal morphology. It has a marked nominative case system.

Segmentally, case is marked by suffixes, by a specific stress position. Eight case forms are

distinguished: nominative (NOM), accusative (ACC), genitive (GEN), dative (DAT),

ablative (ABL), instrumental-comitative-perlative (ICP), locative (LOC) and oblique

(OBL). Kambaata distinguishes two genders: masculine and feminine. The case endings of

42

a feminine noun and a masculine noun of two selected declensions are given in Table 3-15

[55], [60].

TABLE 3-15: TWO EXEMPLARY NOMINAL DECLENSIONS

Declension ACC NOM GEN DAT ABL ICP LOC OBL

F1a -a-ta -a-t -a -aa(-ha) -aachch -aan -aan -a

M1 -a -u -í -ii(-ha) -iichch -iin -aan -a

3.3.2.1. MORPHOLOGICAL STRUCTURE OF NOUNS

The morphological structure of nouns in Kambaata is provided in Figure 3-1. The stem of

a noun consists of a root plus derivational morphemes. The derivational morphemes closest

to the root are predominantly word class-changing formatives. The second type of

derivational morphemes derives singulative and plurative nouns. In the order of

morphemes, number markers are situated between (word class-changing) derivation and

inflection. Number cannot be regarded as an inflectional category such as case. However,

it may also not be unhesitatingly considered a derivational category, though it certainly has

more traits of derivation [19].

In Kambaata, all nominal roots and stems end in a consonant or consonant cluster. An

obligatory (primary) case suffix follows this / these consonant(s), i.e. the minimal noun

consists of a root plus case vowel. Bare roots or bare stems are never used in isolation, but

are merely units of the linguistic analysis. After the (primary) case morpheme, a

(secondary) case / gender suffix and a possessive suffix can be attached. Coordination is

generally marked at the right-most end of a noun [19].

FIGURE 3-1: MORPHOLOGICAL STRUCTURE OF NOUNS [19]

Stem

Root
(Derivation

I)

(Number

Derivation)
Case

(Case

/Gender)
(Possessive) (Coordination)

Derivation Inflection

Figure 3-1 provides only an incomplete picture of the noun structure. Interdependencies

between morphemes, such as the incompatibility of the gender marker with certain case

suffixes, are not integrated into the figure above. Besides, purely pragmatically determined

morphemes, -n, -be, -’nnu, and -ma, and enclitics are omitted.

43

3.3.2.2. CASE

Case has a significant importance in Kambaata, because it is the most important means to

encode the syntactic relations in phrases and sentences. Kambaata differentiates between

eight cases: NOM, ACC, GEN, DAT, ABL, ICP, LOC and OBL [19], [61].

44

TABLE 3-16: NOMINAL DECLENSIONS [61]

Declension ACC NOM GEN DAT ABL ICP LOC OBL

F1a -a-ta -a-t -a -aa(-ha) -aachch -aan -aan -a

F1b -a -a –a -aa(-ha) -aachch -aan -aan -a

F2a -i-ta -i-t -e -ee(-ha) -eechch -een -een -e

F2b -e -/i/ -e -ee(-ha) -eechch -een -een -e

F3a -u-ta -u-t -o -oo(-ha) -oochch -oon -oon -o

F3b -o -u -o -oo(-ha) -oochch -oon -oon -o

F4 -aa-ta -aa-t -aa -aa(-ha) -aachch -aan -aan -aa

F5 -ee-ta -ee-t -ee -ee(-ha) -eechch -een -een -ee

F6 -oo-ta -oo-t -oo -oo(-ha) -oochch -oon -oon -oo

M1 -a -u -i -ii(-ha) -iichch -iin -aan -a

M2 -i -u -i -ii(-ha) -iichch -iin -een -e/()

M3 -u -u -i -ii(-ha) -iichch -iin -oon ´-o

M4a -a -/i/ -i -ii(-ha)) -iichch -iin -aan ´-a

M4b -o -/i/ -i -ii(-ha) -iichch -iin -oon ´-o

M5a = F1b -a -a -a -aa(-ha) -aachch -aan -aan ´-a

M5b = F2b -e -/i/ -e -ee(-ha) -eechch -een -een ´-e

M5c = F3b -o -u -o -oo(-ha) -oochch -oon -oon ´-o

M6 -aa(-ha) -oo(-hu) -ee -ee(-ha) -eechch -een -aan -aa

M7 -ee(-ha) -oo(-hu) -ee -ee(-ha) -eechch -een -een -ee/()

M8 -oo(-ha) -oo(-hu) -ee -ee(-ha) -eechch -een -oon -oo

M9 -uu(-ha) -uu(-hu) -ii -ii(-ha) -iichch -iin -uun -uu/()

Explanations and Examples:

F1a: largest feminine declension; e.g.: macc-a-ta ‘ear’, most plurative nouns, e.g. boorr-a-

ta ‘oxen’

F1b: minor declension of feminine proper nouns, e.g. Bes-a (women’s name)

F2a: e.g. gat-i-ta ‘backyard’

F2b: most feminine proper nouns, e.g. Aacaam-e (women’s name); some common nouns,

e.g. char-e ‘type of bird’

F3a: e.g. xinkuta ‘riddle’, feminine singulative nouns in -(ich)chuta and feminine agent

nouns in -aanchuta e.g. Kambaat-ichchu-ta (SG) ‘Kambaata woman’

45

F3b: minor declension of feminine proper nouns, e.g. Ayyaant-o, some common nouns,

e.g. xorb-o ‘ball’

F4: e.g. mashsh-aa-ta ‘type of knife (for enset food)’, associative nouns in -’aata

F5: e.g. quncul-eeta ‘scraper’, associative nouns in -’eeta

F6: e.g. hiz-oo-ta ‘sister’, associative nouns in -’oota, e.g. Xummiso’oota ‘Xummiso and

his associates’

M1: largest masculine declension, ishima ‘brother of mother’, most loanwords, e.g. muuz-

a < Amh. muz ‘banana’

M2: e.g. fool-i ‘soul’

M3: e.g. utubu ‘center pole (house)’, masculine singulative nouns in -(ich)chu and

masculine agent nouns in -aanchu

M4a: minor declension of masculine proper nouns, e.g. Duuball-a (men’s name);

M4b: masculine proper nouns ending in -aam-o, -am-o, -eeb-o, and -aab-o,

e.g. Wo’llaam-o, Latam-o, Makkeeb-o, Ansheeb-o, Alaab-o

M5a: terms of address, ann-a and abb-a for father; terms belonging to affectionate

language, e.g. ha’-a ‘disgusting, yucky thing’; morphologically identical to F1b

M5b: minor declension of masculine proper nouns, morphologically identical to F2b; e.g.

Moc-e, Doboc-e, Qaallor-e (men’s names); Gurr-e, Booq-e (bull names);

M5c: most masculine proper nouns, morphologically identical to F3b; e.g. Hawaando,

La’llaag-o, Habsiis-o (men’s names); Ebal-o ‘so-and-so’;

M6: e.g. zaanzaa ‘centre of enset corm’, adab-aa ‘boy’,

M7: (so far only) qoqee ‘throat’

M8: e.g. eloo ‘pit’, af-oo ‘mouth’, max-oo ‘rainy season’,

M9: (so far only) haguu ‘dry season’

Case forms of a woman’s name (Muccure) and a letter name (i) compared as an example

for the eight case forms is given in Table 3-17 below [19].

TABLE 3-17: CASE FORMS OF A WOMAN’S NAME (MUCCURE) AND A LETTER NAME (I)

COMPARED [19]

ACC NOM GEN DAT ABL ICP LOC OBL

Muccur-e Muccur-/i/ Muccur-e Muccur-ee(-

ha)

 Muccur-

eechch

Muccur-

een

Muccur-

een

Muccur-e

i-h-e i i-h-e i-h-ee(-ha) i-h-eechch i-h-een i-h-een i

46

3.3.2.3. GENDER

Kambaata distinguishes two genders. There is semantic justification for giving these two

genders the labels ‘masculine’ and ‘feminine’, since nouns denoting males are assigned to

the first gender and those denoting females to the second. The nouns sa’-a(M) ‘cow’ and

meent-u(M) ‘women’ are two exceptions to this rule; here the female sex of the referent(s)

contradicts the masculine gender of the nouns. Nouns which do not denote living beings

are not assigned to a single gender but equally distributed across masculine and feminine

gender [19].

Feminine gender is marked by an accent-neutral morpheme -ta in the accusative and -t/i/

in the nominative. See also most of the feminine declensions in Table 3-18 in Section

3.5.2.2.

e.g. am-a-ta ‘mother’

hix-i-ta ‘grass’

Plurative nouns have generally the form of feminine nouns. They belong to the feminine

declension F1a and trigger feminine agreement on the verb.

e.g. am-aakk-a-ta ‘mothers’ (plurative of am-a-ta ‘mother’)

hiz-aakk-a-ta ‘brothers’ (plurative of hiz-oo ‘brother’ / hiz-oo-ta ‘sister’)

minn-a-ta ‘houses’ (plurative of min-í ‘house’)

Masculine nouns are usually unmarked for gender.

e.g. ann-a ‘father’

buul-a ‘mule (m)’

bonx-a ‘leaf / leaves’

Only on masculine nouns with a long final accusative vowel a morpheme -ha ACC / -hu

NOM can occur optionally.

e.g. ar-oo(-ha) ‘husband’

hag-uu(-ha) ‘dry season’

3.3.2.4. NUMBER

A minimal Kambaata noun consists of a stem and a (primary) case morpheme. The stem

can be a simple root or a root plus (a) derivational morpheme(s). Nouns inflect for the

categories of case and gender. In Kambaata, number is marked, to different degrees, on

common nouns, proper nouns and pronouns [60].

e.g. Basic Singulative

47

kin-u kin-ch-u ‘stone’

e.g. Basic Plurative

min-i min-n-a-ta ‘houses’

Where, the terms “basic form”, “singulative”, and “plurative” are used with respect to the

form of a noun. The “basic form” is the form of the noun which is formally unmarked for

number. The singulative form is the basic form plus a singulative morpheme; the plurative

form contains a plurative morpheme [19].

3.3.2.5. WORD FORMATION

Complex nouns are created by derivation, compounding and blending. Derivational

patterns often change the word class of the base. Nouns can be derived from adjectives and

verbs [19].

3.3.2.6. DERIVATION

Nouns can be derived from adjectives and verbs using suffixes (morphemes) [19].

TABLE 3-18: DE-ADJECTIVAL QUALITY NOUNS [19]

MORPHEME ADJECTIVE

/IDEOPHONES

TRANSLATION DERIVED

NOUN

TRANSLATION

-im-a-ta abb-a(-ta) big abb-im-a-ta being big, size

-inn-i(-ta) hodeem-a(-ta) pregnant hodeem-inni-ta pregnancy

-itt-a baqq y- wake up baqq-itt-a waking up

TABLE 3-19: DE-VERBAL NOUNS GENERATED THROUGH GEMINATION AND

PALATALIZATION [19]

MORPHEME VERB

BASE

TRANSLATIO

N

DERIVED

NOUN

TRANSLATION

-ch-a hiir-am- be translated hiir-an-ch-a translation, meaning

-ishsh-a(-ta) odd-i(i)s- dress odd-i(i)shsh-a-ta clothes

-ishsh-a(-ta) ros- learn roshsh-a-ta lesson; learning

-a buuh- go moldy buuh-a mold

-a-ta wix- sow wix-a-ta grain

-í min- build min-i house

-í-ta ibiib- get lice ibiib-i-ta lice

48

3.3.2.7. REDUPLICATION

Complex nouns can be formed by reduplication, more specifically by full reduplication or

by reduplication of (a part of) the first syllable. The reduplicated (part of the) syllable is

prefixed.

e.g. aleenal-al-een

 shiinaanshi-shiin-aan

3.3.2.8. COMPOUNDING AND BLENDING

COMPOUNDING

Kambaata makes little use of compounding to form complex words. Only very few

compounds are found in Kambaata. However, in these few compounds, stems of various

word classes may be combined to a single constituent. The compound is a single unit

phonologically, because it has only a single accent [19].

e.g. min-i ‘house’+ ann-a ‘father’ min-ann-a ‘head of the family, householder’

abb-a ‘big’ + am-a-ta ‘mother’ abb-am-a-ta ‘grandmother’

abb-a ‘big’ + ann-a ‘father’ abb-ann-a ‘grandfather’

BLENDING

As discussed by Yvonne [19], blending is another morphological tool to make replacements

for new word for newly brought concepts. Blends contain either initial morpheme strings

of two words or one word-initial and one word-final string.

For instance, when Biology textbooks were prepared initially, there were no appropriate

translations for ‘plant’ and ‘animal’ in Kambaata. Thus, the terms given in example below

were created. In both examples, the words of a smallest and a biggest species were

combined into one word [19].

e.g. alg-od-a ‘plant’ alg-ee ‘alga’ + od-ee-ta ‘type of tree (Ficus sycomorus)’

amee-zan-a ‘animal’ ameeb-a ‘ameba’ + zan-aa ‘elephant’

hans-qaala’-a ‘area of medium height’  hansaww-a ‘highlands’ + qaala’-a

‘lowlands’

3.3.3. ADJECTIVE MORPHOLOGY

Kambaata is a language with a large open adjective class. Through derivation, an infinite

number of adjectives can be created. Adjectives are defined in Kambaata as a class of

49

lexemes that display case and gender-agreement with a head if used as modifiers in a noun

phrase [19]. The class of adjectives subdivides into true adjectives, demonstrative

determiners and cardinal numerals, all of which distinguish two genders (masculine,

feminine) and three cases (accusative, nominative, oblique) if used as modifiers in a noun

phrase [52].

3.3.3.1. MORPHOLOGICAL STRUCTURE OF ADJECTIVES

The morphological structure of a maximally complex attributive adjective is given in

Figure 3-2. Various compulsory and optional morphemes can be attached to the root. The

root always ends in a consonant [19].

FIGURE 3-2: MORPHOLOGICAL STRUCTURE OF ATTRIBUTIVE ADJECTIVES [19]

Stem

R
o
o
t

(D
er

iv
at

io
n

I)

(N
u
m

b
er

D
er

iv
at

io
n
)

C
as

e

(-
a
)

(-
n
)

(C
as

e

/G
en

d
er

)

O
b
li

q
u
e

E
x
te

n
si

o
n

(-
n
)

(P
o
ss

es
si

v
e

)

(C
o
o
rd

in
at

i

o
n
)

Derivation Inflection

The morphological structure of an independent adjective corresponds to that of a noun.

 e.g. Qeraa’rr-ut maranch-at ees sagab-unta ass-itee’u.

long-F.NOM walk-F.NOM 1SG.ACC become: thirsty-1SG.PURP.DS do-3F.PVE

The long walk made me thirsty.

danaam-e ~ danaam-i-ta meent-ichch-oo

beautiful-F.OBL ~ beautiful-F.OBL-EXTENSION women-SG-F.DAT

to the beautiful woman

muccur-o ~ muccur-u-a wo’-aan

clean-M.OBL ~ clean-M.OBL-EXTENSION water-M.LOC

in the clean water

3.3.3.2. CASE AND GENDER INFLECTION

Attributive adjectives have a unique morphology that sets them apart from nouns; they

distinguish between two genders (masculine and feminine) and three case forms

(accusative, nominative, and oblique).

TABLE 3-20: ADJECTIVAL DECLENSIONS [19]

50

Declension ACC NOM OBL

A1
M -a -u -a ~ -a-a

F -a-ta -a-t -a ~ -a-ta

A2
M -u -u -o ~ -u-a

F -u-ta -u-t -o ~ -u-ta

A3
M -u -u -o ~ -u-a

F -i-ta -i-t -e ~ -i-ta

A4
M -a -u -a ~ -a-a

F -i-ta -i-t -e ~ -i-ta

A5
M -oo -oo -oo ~ -oo-haa

F -oo-ta -oo-t -oo ~ -oo-taa

A1: A1 is the largest declension of underived adjectives. In addition, it contains derived

adjectives with the formatives -aashsh-a(-ta), -eem-a(-ta), and -im-a(-ta), compound

adjectives, as well as plurative adjectives formed by the reduplication of the stem-final C.

The distinction between masculine and feminine gender is neutralized in the oblique form.

Examples: abb-a(-ta) ‘big’, biillaashsh-a(-ta) ‘light, easy’. When used as the head of an

NP, A1 adjectives belong to the nominal declensions M1 or F1a, respectively (Table 3-16).

A2: A2 contains underived adjectives, e.g. qeraa’rr-u(-ta) ‘long, high, tall’, qixx-u(- ta)

‘equal; fitting’, as well as many derived adjectives, which are either formed with the highly

productive agentive morpheme (-aan), e.g. sal-aan-ch-u-ta ‘pregnant’, or the fossilized -

all morpheme, e.g. duub-all-u(-ta) ‘rich’. The distinction between masculine and feminine

gender is neutralized in the oblique form. When used as NP heads, A2 adjectives inflect

like nouns of the declensions M3 or F3a, respectively (Table 3-16).

A3: A3 is characterized by a vowel change between the masculine and the feminine form.

It contains an unlimited number of adjectives derived through the proprietive morpheme -

aam, e.g. dan-aam-u / dan-aam-i-ta ‘good, beautiful’, wo’- aam-u / wo’-aam-i-ta ‘watery,

liquid, juicy’. As NP heads, feminine adjectives of A3 inflect like nouns of declension F2a,

masculine adjectives like nouns of M3. Most numerals inflect like A3 adjectives.

A4: A4 contains only a single adjectival quantifier: hoolam-a / hoolam-i-ta ‘many’. The

adjective is characterized by a vowel change ‘a’ vs. ‘i’ between masculine and feminine

51

forms in the accusative case. As an NP head it receives the nominal morphology of the

declension M1 or F2a. Some numerals inflect like the A4 adjective.

A5: A5 has (as of yet) only one example: haar-oo(-ta) ‘new’. As an NP head it inflects like

a noun of M8 or F6.

3.3.3.3. NUMBER MARKING

The description of number marking on adjectives meets with the same problems as number

marking on nouns. Adjectives are plurativized by geminating the stem-final consonant (if

it is single) and by transfer into declension A1 (PL1 formation). If the adjectival stem ends

in a consonant cluster, only the plurative 2 morpheme -aakk-ata is applicable.

e.g. wiim-a / wiim-ata  wiim-m-ata

full-M.ACC full-F.ACC full-PL1-F.ACC

ceemmallaashsh-a / ceemmallaashsh-ata  ceemmallaashsh-aakk-ata

lazy-M.ACC lazy-F.ACC lazy-PL2-F.ACC

3.3.3.4. WORD FORMATION

Complex adjectives can be formed through derivation, compounding, and reduplication.

Simple adjectives share their stem with inchoative verbs. Complex adjectives are derived

from simple adjectives, nouns, verbs, ideophones, and manner demonstratives.

3.3.3.5. DERIVATION

Adjectives can be derived from adjectives, nouns and verbs using suffixes [19].

TABLE 3-21: ADJECTIVES FORMED FROM NOUNS

MORPHEME BASE

NOUN

TRANSLATION DERIVED

ADJECTIVE

TRANSLATIO

N

-aam-u / -i-ta godab-a stomach godab-aam-u / -i-ta greedy

-aam-u / -i-ta dan-a beauty, kindness dan-aam-u / -i-ta beautiful, good

-beel-u(-ta) wozan-a heart wozan-beel-u(-ta) heartless

TABLE 3-22: ADJECTIVES AND THEIR CORRESPONDING VERBS

MORPHEME VERB TRANSLATION DERIVED

ADJECTIVE

TRANSLATION

-a(-ta) abb- be(come) big abb-a(-ta) big; much, many

52

-a(-ta) annann- be(come) different annann-a(-ta) different

-aan-ch-u(-ta) ros- learn ros-aan-ch-u(-ta) student

-aan-ch-u(-ta) ros-is- teach ros-is-aan-ch-u(-ta) teacher

-im-a(-ta) hoog- be(come) tired hoog-im-a(-ta) weak, tired

-all-a(-ta) baab be(come) frightened baab-allu(-ta) frightened

-eem-a(-ta) biddiqq y- be(come) flat, even,

be spread out

biddiqq-eem-a(-ta) flat, even, spread

out

3.3.3.6. REDUPLICATION

Adjectives are reduplicated in order to express ‘each of the quality X’. As the examples in

Table 3-23 illustrate, the reduplication is partial and also complete. In some cases, the

adjective is fully reduplicated (e.g. annann-u annann-u). In other cases, the stem-initial C

is additionally geminated (e.g. qa-q-qahu(-ta)) [19].

TABLE 3-23: REDUPLICATED ADJECTIVES [19]

NOTE ADJECTIVE TRANSLATIO

N

REDUPLICATED FORM TRANSLATI

ON

CV-C-prefix qahu(-ta) small qa-q-qahu(-ta) small-each

Full annann-a(-ta) different annann-a(-ta) annann-aa(-ta) different each

3.3.3.7. COMPOUNDING

Complex adjectives could be made by the composition of an adjectival or numeral stem

plus a nominal stem [19]. See example below.

e.g. mat-u ‘one’ + hagar-a ‘type’  mathagar-a(-ta) ‘of one type’;

mat-i-ta ‘one’ + ill-i-ta ‘eye’  matill-a(-ta) ‘one-eyed’

mexx-u-ta ‘single’ + hagall-u-ta ‘branch’  mexxagall-a(-ta) ‘of the same type’

lam-u ‘two’ + fool-i ‘soul’  lamfool-a(-ta) ‘highly pregnant’ (literally “two-

souled”)

3.4. CHALLENGE OF THE LANGAUGE FOR STEMMING

The main challenges in Kambaata for stemming words is its rich and complex morphology,

i.e. words are formed making use of

 Multiple (concatenated) suffixes

 Irregularities through infixation, compounding, blending, and reduplication of

affixes.

53

CHAPTER FOUR

DESIGN OF THE STEMMING ALGORITHM

4.1. INTRODUCTION

As discussed in the third chapter, Kambaata word formation process involves mainly

suffixing. However, words can also be formed by infixing, reduplication and compounding

in some cases. In developing IR systems and some other NLP applications for the language,

reducing these kind of morphological variants into corresponding stem increases the

retrieval performance [1]. This could be accomplished by a conflation technique, which is

also known as stemming. The purpose of stemming algorithm is reducing various variants

of words in to their common representation also referred to as stem. Therefore, the goal of

the chapter is exploring stemming techniques and designing rules and developing a

prototype stemmer for Kambaata language. Thus, the next sections present all these

processes. The compilation of affixes, the algorithm design and evaluation of the stemmer

has also been introduced as well.

4.2. THE CORPUS

Various text documents that contain the Kambaata words for the definition of rules and

experimentation of the prototype stemmer has been compiled from Durame Senior

Secondary and Preparatory School and KT Zone Education Department. The corpus that

utilized for the identification and analysis of affixes and word formations contained

117,198 total word tokens with 26,731 distinct words. An additional corpus with 12,731

tokens containing 4,914 distinct words has been used to prepare a test data. The test data

was collected from separate corpus to examine the algorithm from another corpus. Hence,

the total corpus used for the algorithm design and testing of the stemmer is of 129,929 word

tokens with 28,853 distinct words.

TABLE 4-1: WORD DISTRIBUTION RATIO OF SAMPLE KAMBAATA TEXT

Text Total words Distinct words Word ratio

Corpus for affix

identification
117,198 26,731 22.81%

Test set 12,731 4,914 38.60%

Total Corpus 129,929 28,853 22.21%

54

4.3. NORMALIZATION AND TOKENIZATION

Normalization and tokenization are essential data preprocessing steps in NLP applications

like stemming. In the preprocessing stage, file formats, character sets, and variant forms

are often transformed, so that all text, irrespective of its source, is in the identical format.

Preprocessing must ensure that the source text be offered to stemming program in a form

usable for it. As an example, stemmers normally require their input to be tokenized, i.e. text

components, generally word forms or sentences are determined and positioned on distinct

lines of the input [65]. In this step, this study addresses normalization and tokenization.

All punctuation marks with the exception of ‘apostrophe’ (’), which is used as glottal sound

‘i’ (e.g. “asi’m” ‘look at”) and also separate consecutively happening similar vowels in

words (e.g. “ga’aa” ‘tomorrow’), control characters, numbers and special characters are

removed from the text before the data is processed. After all punctuation marks and special

characters with the exception of (’) have been changed to spaces; space is marked as a word

splitting up border. As a result, if a series of legitimate characters is followed by space, that

sequence is determined as a word in tokenization process.

FIGURE 4-1: ALGORITHM FOR NORMALIZATION AND TOKENIZATION

Open the text file for processing

Create string container

Do

Read the content of the file line by line and split to string by space

Put to container for each strings

For word in container and Special _characters= “.?/ |\ @*=^&

()፥…፣፤።```+_;:፡" ‘!,#$% []{}<>-1234567890”

If word contains Special _characters

Replace them with a space

End for

While end file

The above algorithm normalizes and tokenizes the document as follows. First, the text

document is opened and the content of the file is read line by line. Second, split them by

using space as a boundary in to a list of words. Third, if word within the list contains

punctuation marks, control characters, numbers and special characters of Kambaata which

55

are defined as Special characters are found, replace them by space. This continues until

end of line is reached.

4.4. COMPILATION OF AFFIXES

The known affixes of Kambaata language are suffixes, infixes, reduplication and

compounding. In contrary to English stemmers that perform very effectively by removing

suffixes along with prefixes to get the stems, an effective and powerful Kambaata stemmer

not only able to remove suffixes, but also remove infixes and define context sensitive rules

to transform irregular words to their stems as well. Without removing all these affixes, the

stemmer cannot be effectively used to stem Kambaata documents.

Kambaata is a language that strongly depends on suffixation based on the reviewed

literature [19], [54], [58] and that is backed by the researchers’ linguistic knowledge as a

user of the language as well. Morphemes that are used to represent a prefix and prefix-

suffix pairs in other languages are all represented by a suffix in the case of Kambaata. If

we consider an example from Amharic word “ከ-ቤት” ‘from home’, the prefix “ከ-” ‘from’

is prefixed to the word “ቤት” ‘home’. Its equivalent in Kambaata is “min-iichch” where “-

iichch” is the suffix which represents the Amharic prefix “ከ-”. An additional illustration

could be observed by looking at the Amharic word “ከ-ቤት-ም” ‘also from home’. In this

example, the prefix “ከ-” and the suffix “-ም” occurred at the same time creating prefix-

suffix pair “ከ-ም”. Its equivalent in Kambaata is “min-iichch-ii” where the suffix “-iichch

is equivalent to the prefix “ከ-” and the last suffix “-ii” represents the suffix “-ም”.

We can also see the case of negation or opposite word formation by taking one example

from Amharic word “አት-ሥራ” ‘do not work’, the prefix “አት-” ‘do not’ is prefixed to the

word “ሥራ” ‘work’. Its equivalent in Kambaata is “hujat-t-oot” where “-t-oot” is the suffix

which represents the Amharic prefix “አት-”.

Affix collection relies on the strategy or type the stemming technique chosen, longest match

or iterative [7]. The longest match technique requires all forms of the affixes, simple suffix

(a minimum form of suffix that cannot be decomposed into a lot more suffixes) and

concatenated (a suffix formed by combination of two or more simple suffixes), for

successful stemming. Whereas, the iterative method simply requires a list of basic affixes

and removes them iteratively [17].

56

Suffixes concatenation is frequent in Kambaata words. Consequently, much more base

suffixes can be combined with each other and attached to a word. Such combination is often

extremely huge complicating the identification process of the full list of concatenations.

Concatenation additionally makes suffixes lengthier by connecting one suffix to the other.

Thus, collecting large data for affix analysis is regarded as the ideal choice to compile the

biggest possible suffixes from Kambaata language texts to be able to utilize for the

development of the stemmer. Therefore, 6299 unique suffixes (ranging from length of one

character to twenty characters) and more than 300 exceptional word formations that require

context sensitive and recoding rules have been identified in this study.

4.4.1. COMPILATION OF SUFFIXES

The suffix collection ranges from simple suffixes for instance “ii”, “ikke”, “aan”, “indo”

to concatenated suffixes for example “anniichchisin”, “eemmahanniichch”,

“iishshoomaantassa”. Table 4-2 shows some of the suffixes collected for the design of the

algorithm. The complete list of suffixes identified is too much. Hence, it is difficult to

present all the suffixes in this document. Therefore, randomly selected 14.23% of the whole

suffixes (or 899 suffixes) are presented in Appendix I.

TABLE 4-2: SAMPLE SUFFIXES OF KAMBAATA

Basic suffixes Concatenated suffixes

ii aqqansiisseenata

een isaanniichchissa

aan oomaniichchissan

ba’a iishshoomaantassa

ihaa iteentahanniichch

ikke nteentahanniichch

indo aqqansiisaanchiichch

iqqi ansiissaahaarranii

iyye atteentahanniichch

ta attoohanniichch

it eenayyoommabe

oo eemmahanniichch

ua isaanchooha’nne

un anniichchisin

57

4.4.2. COMPILATION OF INFIXES

Occasionally, “-n-” and “-m-” are infixed in Kambaata words [54]. Table 4-3 shows “-n-”

infixation and the only known “-uu-” infix in the derivation of a verb “xaaf” ‘write’ to a

noun “xuuf” ‘writing’. There is also pragmatically known prefix “ma-” in the formation of

a noun “ma-xaaf-a” ‘book’ from the same verb “xaaf” ‘write’ even though it’s concluded

in literatures that Kambaata is exclusively suffixing language [19], [58].

TABLE 4-3: INFIXATION IN KAMBAATA

Word Infix stem

a-n-f-oommi n af

aa-n-g-oommi n aag

da-n-g-umbudda n dag

ha-n-s-een n has

hoo-n-git n hoog

huja-n-t-eemm n hujat

x-uu-f-iichcch uu xaaf

ma-xaaf-f-aachch xaaf

4.5. THE RULES

4.5.1. CONTEXT SENSITIVE RULES

A context-free stemmer is one which eliminates strings without having any account of the

leftover stem, and may therefore remove strings that are similar to, but which in fact are

not legitimate affixes [7]. For instance, removing “un-” from “uniform” or “-al” from

“meal” has this kind of behavior and so bad outcomes are acquired if context free approach

is followed for Kambaata. For example, xaw-aaqqitoou ‘they talked’ aaqqitoou ‘they

took’, have same word ending aaqqitoou which is in the list of suffix. Removing this ending

string result in xaw, that is the correct stem for the first word. However, if we remove the

same string from the second word aaqqitoou, the stemmer will remove the word

completely; hence we couldn’t get the intended output where the correct stem for this case

is aaqq ‘take’ even if the suffix itoou exists in the suffix list. According to the researcher’s

linguistic knowledge, there are many such scenarios in Kambaata. Therefore, the researcher

decided that context-sensitive approach should be adopted, with the longest match suffix

removal that is being controlled by two action codes and four conditions. The three types

of context sensitive actions applied are:

58

Action 1 (A1): Don’t perform affix removal

Action 2 (A2): Transform or substitute the word with others partly or completely

as specified in the rules.

Action 3 (A3): Remove affixes.

The tree types of conditions applied are the following:

Condition 1 (C1): Check characters at the beginning of the stem and characters at

the end of the suffix with the rules defined if they match. This is to avoid the

removal of non-genuine affixes.

For example, if word starts with “g” and ends with “ntaa”, replace “ntaa” with “m”

(giphpha-ntaa ‘oppose each other’giphpham ‘oppose’) with the exception to

words that start with “gaan” and “gix” as their respective stems are “gaan” and

“gix”.

FIGURE 4-2: ALGORITHM FOR CONDITION 1

if (word starts with "g" and word ends with "ntaa" and not

word starts with “gaan" and not word starts with "gix") {

replace "ntaa" with "m";

}

This algorithm is one typical example that replaces “ntaa” with “m” for a word

“giphpha-ntaa” but not for words like “gaan-taa” and “gix-antaa”. The action taken

for this condition is Action 2 when the condition is satisfied.

Condition 2 (C2): For words with characters less than four but greater than one (or

words with length of 2 or 3). These are words directly taken as output stems from

test corpus if exist.

For example, a word “kei” and “tam” are both words and stems that exist in the test

set. Since minimum stem length in Kambaata is 2 and most stems in Kambaata have

length greater or equal 3, the stemmer is designed in a way it outputs such words

without going through stemming process.

FIGURE 4-3: ALGORITHM FOR CONDITION 2

if (length of Word is 2 or 3) {

59

return Word as stem;

}

The action taken for this condition is Action 1 when the condition is satisfied.

Condition 3 (C3): A minimum stem length should be greater or equal to two

characters. This is to maintain the minimum stem length of the word in the language.

In Kambaata meaningful word stem or word has a minimum length of 2.

FIGURE 4-4: ALGORITHM FOR CONDITION 3

if ((length(WORD)-length(SUFFIX)>1) {

Remove Suffix;

}

TABLE 4-4: CONTEXT SENSITIVE WORDS EXAMPLE 1

Word starts

with

Followed by

Word

end with
Stem

Condition

mann ∅ ann mar ‘go’ C1,A2

mannee - - mar ‘go’ C1,A2

mann aam/ayy/un - mar ‘go’ C1,A2

mann ∅ nna manch ‘human’ C1,A2

mann aakkata/iichch - manch ‘human’ C1,A2

manni - - manch ‘human’ C1,A2

manno ∅ omata manch ‘human’ C1,A2

From Table 4-4 above and Table 4-5 below, we can see that word formation in Kambaata

is complex and there is no easy way to remove morphological variants of words to form

their respective stems. It clearly shows that the affixation in Kambaata words involves

irregularities which makes a very complex situation for stemming. Hence it requires a detail

analysis of Kambaata word formation for designing the algorithm.

60

TABLE 4-5: CONTEXT SENSITIVE WORDS EXAMPLE 2

Word ends with Actual suffix Substitution Scenario Stem

ntaa ntaa ntaa∅ ga'aa-ntaa ga'aa

ntaa ntaa ntaam ka-ntaa kam

ntaa ntaa ntaam wii-ntaa wiim

antaa antaa antaa∅ gix-antaa gix

assi assi assi∅ xoqq-assi xoqq

assi assi assi∅ binn-assi binn

assi i i∅ caqass-i caqas

assi i i∅ ass-i ass

aassi i i∅ k-aass-i kaas

aassi i i∅ aass-i aass

aassit it it∅ z-aass-it zass

aassit it it∅ aass-it aass

aaqqitoou aaqqitoou aaqqitoou∅ xaw-aaqqitoou xaw

aaqqitoou itoou itoou∅ aaqq-itoou aaqq

ittaa ittaa ittaa∅ saww-ittaa saww

ittaa aa aa∅ itt-aa it

aaqqiyye aaqqiyye aaqqiyye∅ xaw-aaqqiyye xaw

aaqqiyye iyye iyye∅ aaqq-iyye aaqq

4.5.2. RECODING RULES

Substitution rules are defined to handle some of the suffixes individually. As mentioned in

challenges section at the end of this chapter, most of the rules in context sensitive and

substitution part are defined for either individual words or work for few group of words.

FIGURE 4-5: ALGORITHM FOR SUBSTITUTION

if ((word ends on ccano|jjo) && (if word starts with xaa)) {

replace ccan or jjo by z;

}

61

For example, the pseudocode for the algorithm shows that for a word that starts with ‘xaa’

and having ‘ccano’ or ‘jjo’ at its ending, will be recoded as follows:

Ending Replaced by Word Stem Condition

ccano  z xaa-ccano xaaz if word stars with ‘xaa’

jjo  z xaa-jjo xaaz

The following rules are examples and the full list is provided in Appendix II.

TABLE 4-6: EXAMPLE SUBSTITUTION RULES

Word Suffix Substitution Stem Condition

qora-mbun -mbun b qorab

xuu-jjoomm -jjoomm d xuud if word stars with 'xuu'

agu-xxantaau -xxantaau d agud

a-nfaamm -nfaamm f af

a-ngaamm -ngaamm g ag

bee-qqameemma -qqameemma h beeh

waa-nneemm -nneemm l waal

akee-nkeemm -nkeemm k akeek

giphpha-ntaassa -ntaassa m giphpham

ma-nnoommida -nnoommida r mar

ro-nsoomm -nsoomm s ros

i-chchaan -chchaan t it

i-nto -nto t it

huja-xxayyoo -xxayyoo t hujat

bii-cco -cco x biix

xaa-ccano -ccano z xaaz if word stars with 'xaa'

xaa-jjo -jjo z xaaz if word stars with 'xaa'

xaa-nzan -nzan z xaaz

4.5.3. SUFFIXES REMOVAL RULES

To cope with each and every suffix separately, 20 groups of suffix removal rules are

designed. The rules begin with stemming the longest suffix first and the smallest suffix last

together with other conditions. Because of the large number of the suffixes within each

62

rule, the researcher introduced just couple of suffixes for rules 5 to 6 and 8 to 18. Rules 1

to 4, 7, 19 and 20 are provided with full list of suffixes. The rules are introduced in

Appendix III in pseudo-code.

4.6. THE PROPOSED STEMMING ALGORITHM

Figures 4-6 and 4-7 below present a rule based longest match and context sensitive

algorithm for stemming Kambaata word variants. The minimal length for a meaningful

Kambaata word/stem is two according to the researcher’s own learning experience and

observation from the corpus as well as textbooks and dictionary. In a given corpus of 4100

Kambaata word (which is taken from test set corpus for the analysis of this purpose), only

0.39% (16 words) have character length of 2 and 3. Therefore, the researcher has decided

not to conflate words with length less than 4 in order to save the computational time of the

algorithm. The stemmer will stem a word if the remaining stem after the suffix removal is

a word having length greater or equal to 2, because most of the stems in the language are 3

or more characters long or have two or more radicals [19]. In Kambaata, verbal root

necessarily ends in a single consonant or maximally two Cs (a consonant cluster) [19], [53].

Therefore, the researcher also considered such scenarios and defined rules accordingly. For

the suffix removal component, rule has been defined to remove one consonant if the

remaining stem length is greater than 4 after suffix removal and if it ends with double letter.

However, double consonant at the end of the stem with length less than or equal to 4

character is not removed because the literature shows that there is a possibility of double

consonant occurrence [19]; and such conditions usually happen in the shorter stems

according to the linguistic knowledge of the researcher.

63

FIGURE 4-6: FLOW CHART FOR STEMMING PROCESS OF KAMBAATA STEMMER

Start

Return the Stem &

save in the file

Flow Chart for the Stemming Process of Kambaata Words

Open file

Read word

Is Len(word)= 2 or

3?

Yes

Does the word satisfy

Context sensitive &

recoding conditions?

No

Yes

Does a matching suffix

exist in the list?
No

Is Len(word)-

Len(suffix)> 1 ?

Yes

Yes

No

No

Is last letter double

& len(word)>4?

No

Remove

last letter

Yes

Apply the

rule

Apply the

rule

Is EOF reached?

No

Yes

Stop

64

FIGURE 4-7: THE PROPOSED STEMMING ALGORITHM

While Not End of File (EOF)

Do

1. Get the WORD and measure the length(WORD) to be stemmed

2. IF length (WORD) = 2 or 3

Return WORD

ELSE

CONTINUE

3. IF the length(WORD)>=4

3.1. Determine the WORD beginning and ending list in the rules and Search a list

of transformation for a match to the WORD being stemmed

IF a match found

Recode the WORD according to the rule and

Return STEM

ELSE

CONTINUE

3.2. Determine the SUFFIX and Search for the suffix in the ending list

IF a match found

IF (length(WORD)-length(SUFFIX)>1

Remove suffix

Return STEM

IF last letter of the remaining stem is double & length

(WORD)> 4

Remove last letter

Return STEM

End for

End While

The algorithm works in the following way: first, a word file is opened and word read

sequentially. If there is no next word or EOF is reached, the stemmer stops processing

otherwise it continues. Next, the length of the word is measured and if the word has length

of 2-3 characters, the word will be returned as a stem without going through the stemming

65

process. If not, it adheres the context sensitive and recoding procedures according to the

specific rules provided, i.e. if the length of the word is greater or equal to 4. If the word

satisfies the conditions, it will be transformed and recoded. Otherwise, word to be stemmed

is provided to suffix removal rules lastly when they tend not to fulfill the conditions

presented in the context sensitive and recoding rules. The suffix stemming rules range from

one-letter suffixes to twenty-letter suffixes. The algorithm begins stemming the words from

the longest twenty-letter suffixes to the shortest one-letter suffixes sequentially. The

minimum stem length rule is defined under the suffix removal component and is checked

before the suffix is completely removed. The stemmer also removes last double letter for

stems with character length of greater than 4 after suffix removal and if the last letter is

double. The procedure continues reading next word until EOF is reached. If EOF not

reached, the process continues until all words are stemmed. The detail working procedure

is explained with example in the subsequent section.

4.7. IMPLEMENTATION OF THE STEMMER

The algorithm’s rules are implemented as a sequential program by using Python

programming language. It is implemented in longest match technique and affixes are

removed through the process of matching the input word ending to the list of affixes in the

rules. The algorithm removes single and concatenated suffixes without iteration. The

researcher has collected the affixes used in Kambaata to form different word variants. Using

these affixes all possible combinations of the affixes are created and the correct ones are

selected to form the rules.

The way in which the algorithm functions is described using illustration as follows. First,

a word is given to the stemmer. Let the stemmer obtain the word “rosisaanchiihanki’nne”

‘for your teacher’. In this word, we can get eleven meaningful suffixes “-is”, “-isa”, “-isaa”,

“-isaanchii”, “-isaanchiiha”, “-isaanchiihanki’nne”, “-iihanki’nne”, “-anki’nne”, “-

’nne”, “-nne”, and “-e”. The stem is “ros” ‘learn’. After getting the word

“rosisaanchiihanki’nne”, the number of letters appearing in the word is counted. The word

“rosisaanchiihanki’nne” has 21 letters which is not less than 4, the minimum required

length for a word to be stemmed, and then the word passes to the next step. Next, the word

beginning and ending is checked and goes through context sensitive and recoding rules, if

a match exist, specific transformation rule is applied to the word. If the matching condition

doesn’t exist in the rules, the word passes to the next suffix removal component. Since we

66

have all the eleven suffixes mentioned above are kept in the suffix dictionary in the longest

match suffix list; When reading suffix from the suffix list provided, the stemmer gets the

suffix “-isaanchiihanki’nne”. While scanning list of suffixes, it may also get suffixes like

“-iihanki’nne”, “-anki’nne”. As the stemmer is longest match and context sensitive it

checks the rules if any and then it immediately removes only “-isaanchiihanki’nne”

resulting a word “ros” if the remaining stem has a length of more or equal to 2 characters.

Since the remaining word has 3 letters it will pass to the next step. Finally, minor

transformation such as last letter reduplication is removed if the length of the remaining

word (stem) is greater than 4. In our case, “ros” has no reduplicated last word and also the

remaining word length is not greater than 4. Therefore, “ros” is provided as the output of

the stemmer.

4.8. EXPERMENTATION AND EVALUATION

The stemmer in this research is evaluated against correctness and dictionary reduction

methods. Error counting strategy is employed to evaluate the algorithm with regards to the

number of accurately stemmed results. The quantity of properly conflated words and

erroneously conflated ones are counted for analysis. The output of the stemmer was

examined in contrary to the respective anticipated linguistically valid stems. The errors

were then described in terms of under stemming and over stemming. When a term is over-

stemmed, an excessive amount of it is eliminated. Over-stemming can lead to unrelated

words to be conflated. Under-stemming is a situation wherever very little of a word is

eliminated. Under-stemming will prevent related terms from being conflated.

4.8.1. EXPERMENTATION OF THE STEMMER

To examine the overall performance of the stemmer, experiments have been carried out.

The stemmer had been run on small sample data sets to check its effectiveness throughout

implementation. Two separate experimentation data sets were taken out randomly from the

corpus which was utilized for the affix analysis. The experimentation was conducted in two

test sets having different data, where the first test set was comprised of 108 words and the

second test set contained 102 distinct words. Table 4-7 sums up the result prior to the

evaluation of the stemmer which is discussed on the subsequent sections. The purpose of

this experimentation exercise is not to evaluate the stemmer rather it is to define more rules

during design of the algorithm and this is the reason behind using small data sets.

TABLE 4-7: EXPERIMENTATION OF SAMPLE DATA

67

Experiments
Total distinct

words

Correctly

stemmed

Over

stemmed

Under

stemmed
Accuracy

Experiment 1 108 96 11 1 88.89%

Experiment 2 102 96 6 0 94.12%

The improved result in experiment two (94.12%) was the result of additional rules defined

after the first experiment conducted which registered 88.89% accuracy. In the first

experiment, out of 108 words, 10.19% (11 words) were over stemmed and 0.93% (1 word)

was under stemmed. In the second experiment, all the errors, i.e. 5.88% (6 words out of

102 words) were generated by over stemming. The evaluation of the final stemmer on larger

test sets is discussed in sections 4.8.2 and 4.8.3.

4.8.2. EVALUATION AND DISCUSSION OF THE FIRST STEMMER

After experimentation of the stemmer on sample data as discussed in section 4.8.1 above,

29 additional rules were defined to increase the performance of the stemmer on the test data

during evaluation. The next section explains the results of evaluation of the stemmer.

4.8.2.1. THE RESULTS

The first stemmer was run in two various test sets of TS1 and TS2 having 1385 and 1040

distinct words which contain different words. The corpus from which the rules of the

stemmer were developed is totally different from the test set. This was performed

deliberately in order to see the efficiency of the stemmer in the real data. The summarized

results of the first stemmer (first evaluation) are provided in Table 4-8.

TABLE 4-8: ACCURACY OF THE FIRST STEMMER

Test Set

Total

Word

Count

Correctly

Stemmed

Words

Over

Stemmed

Words

Under

Stemmed

Words

Stemmer

Accuracy

Error

Rate

TS1 1385 1302 76 7 94.01% 5.99%

TS2 1040 969 62 9 93.17% 6.83%

Combined 2425 2271 138 16 93.65% 6.35%

The combined output (TS1 + TS2) from the stemmer indicates that, out of 2425 words,

2271 (93.65%) words were stemmed correctly. 138 (5.69%) words were over stemmed and

16 (0.66%) words were under stemmed. Totally, this stemmer generated 154 (6.35%)

words inaccurately stemmed words. As a result, the accuracy of the stemmer is 93.65% on

the combined test set.

68

TABLE 4-9: SAMPLE OF STEMMED WORDS BY THE FIRST KAMBAATA STEMMER

Unstemmed Term Expected Stem
 Output of the

Stemmer
Error Type

aagaqqancha aag aag

aassantoossa aass aass

afeesi afoo afoo

affaau af af

afuuIlleeii afuuIll afuuIll

ageen ag ag

agudaa agud agud

akeekaakkata akeek akee Over Stemmed

angassa ang ang

assussa ass ass

gantoosi gan gantoosi Under Stemmed

gardabbaakka gardab gardab

garegiin gar gar

gooffeeu goof goof

hanqafantaa hanqaf hanqaf

hanxishshosiga hanxishsh hanxishsh

haraaraga haraar haraa Over Stemmed

hasammoru has has

hawwa haww haww

hujachchessa hujat hujat

ilteeu il ilt Under Stemmed

TABLE 4-10: EXAMPLES OF WRONGLY CONFLATED TERMS BY THE FIRST VERSION OF

KAMBAATA STEMMER (OBTAINED FROM THE TS1)

Unstemmed Term Expected Stem
Output of the

First Stemmer

First Stemmer

Error Type

hegeegissataa hegeeg hegee Over stemmed

higano hig hi Over stemmed

hogobo hogob hog Over stemmed

69

honso hons hon Over stemmed

hoolchutaans hoolch hoolc Over stemmed

inkiilantee inkiil inkii Over stemmed

jaallaaakkaahaansa jaal jaall Under stemmed

kajjelano kajjel kajje Over stemmed

keeImmii keeIm keeI Over stemmed

kullessa kul kull Under stemmed

kuushebiihaa kuush kuus Over stemmed

lallabaanchoomaantas lallab lalla Over stemmed

lallat lal lall Under stemmed

leinu lei le Over stemmed

lokkaan lokk lo Over stemmed

maanata maan ma Over stemmed

maarka maark maar Over stemmed

maccooccisiishshessa maccoocc maccoocc Under stemmed

maleeshshata malees mal Over stemmed

maru mar ma Over stemmed

4.8.2.2. WORD COMPRESSION

The stemmer is as well evaluated in terms of word compression rate. For determining the

word compression rate (C), or reduction of dictionary is calculated using the formula [66]:

 C = 100 * (W - S)/W

Where,

 C - is the compression value (in percentage)

W - is the number of the total words

 S - is a distinct stem after conflation

TABLE 4-11: WORD COMPRESSION RATIO OF TOTAL WORDS

Test set Stem (S) Word (W) Compression Ratio (C)

TS1 448 1385 67.65%

TS2 394 1040 62.12%

Overall 842 2425 65.28%

70

The percentage of compression for Kambaata text based on the test set text for this first

stemmer becomes 100 * (2425- 842) / 2425 = 65.28%.

TABLE 4-12: WORD COMPRESSION RATIO OF CORRECTLY STEMMED WORDS

Test set
Correct

Stem (S)

Correctly Stemmed

Word (W)

Compression Ratio

(C)

TS1 388 1302 70.20%

TS2 336 969 65.33%

Overall 724 2271 68.12%

The percentage of compression for correctly stemmed words for this first stemmer becomes

100 * (2271- 724) / 2271 = 68.12%.

From this result, we can observe that the stemmer can reduce the Kambaata morphological

variants of words and reduce the size of the file by 68.12% which is very significant

reduction.

4.8.2.3. PROBLEMS OBSERVED

Reasons for the observed problems in the first stemmer are:

i. Due to the complexity of the morphological variations in Kambaata words, it is

difficult to define a rule that works for all or for some group of words. For example,

suffix “ntaa” which is recoded as “m” for some words that start with letter “g” in

Kambaata, does not work for words that start with “gaan” and “gix” even though both

words start with the same letter “g”.

ii. It was difficult to come up with the complete affixes and/or rules because of the

complexity of the language. More conditions/rules are required based on detailed

study of the morphology of the language. See examples in Section 4.5.1.1. Recoding

and Context Sensitive Rules.

iii. Some suffixes which perfectly fit for some words cause over stemming and under

stemming errors for the other words. For example, a suffix “-eeda” is a genuine suffix for

a word “waalleeda” ‘if he came’ where the stem is “waal” ‘come’. However, if we have a

word “bareeda” ‘is good’ the suffix “-eeda” cause over stemming error for this word because

the stem for “bareeda” is “bareed” ‘good’ but not “bar” which a root word for ‘day’.

iv. Irregular words require special rules to handle their affixation.

v. Disagreement of minimum stem length controlling rules with the suffixes will also

generate errors, i.e., it causes the stemmer to generate unrelated output to the input

71

word. For example, “aaqqitoou” ‘they took’ has stem “aaqq” ‘take’. But the suffix

“aaqqitoou” also exists in the suffix list for words such as “xaw-aaqqitoou” “they

talked” where the stem is “xaw” ‘talk’. Unless we define a special rule that removes

only “itoou” to handle word “aaqqitoou”, it will create confusion for the longest

match suffix removal stemmer to remove “aaqqitoou” from words “aaqqitoou”.

Therefore, minimum stem length controlling rules have been defined in the suffix

removal part that checks the length of the remaining stem during suffix is removal.

Hence unless special condition is defined for the word “aaqqitoou”, the controlling

function pushes the stemmer generate wrong output.

4.8.3. EVALUATION AND DISCUSSION OF THE IMPROVED

STEMMER

To resolve the issues determined on the first version of the stemmer, the following minor

enhancements were introduced to the algorithm.

1) To solve the problem described under section 4.8.2.3(i), twenty-three more

conditions and rules were added. Due to the complex word formation in the

language, it is difficult to find generic rules.

2) To solve the problem described under section 4.8.2.3(ii), more suffixes which were

not previously available in the suffix list are included manually. For example,

“achchiichchin”, “achchuna”, “eennossagiihaa”, “igiihaa” and “aawwisu” were

added to the suffix list.

3) To solve the problem described under section 4.8.2.3(iii), some suffixes which are

previously available in the suffix list are removed and instead other rules were

defined. For example, “ccii”, “eeda”, “innitii” and “innita” were removed from the

suffix list.

4) To solve the problem described under section 4.8.2.3(iv), some context sensitive

and substitution rules were defined.

4.8.3.1. THE RESULTS

The stemming procedure of the improved stemmer is identical to the first stemmer; the

difference is the number of rules added, affixes added and removed, and conditions defined

to the latest stemmer. The improved stemmer output in comparison with the first version is

shown in Table 4-13.

72

TABLE 4-13: COMPARISON OF PERFORMANCE BETWEEN THE FIRST AND THE IMPROVED

STEMMER

Un-stemmed

Term

Expect

ed

Stem

 Output of

the First

Stemmer

First Stemmer

Error Type

 Output

of the

Improved

Stemmer

Error after

Improvement

hegeegissataa hegeeg hegee Over Stemmed hegeeg No error

higano hig hi Over Stemmed hi Over Stemmed

hogobo hogob hog Over Stemmed hogob No error

honso hons hon Over Stemmed hon Over Stemmed

hoolchutaans hoolch hoolc Over Stemmed hoolch No error

inkiilantee inkiil inkii Over Stemmed inkiil No error

jaallaaakkaahaansa jaal jaall Under Stemmed jaall Under Stemmed

kajjelano kajjel kajje Over Stemmed kajje Over Stemmed

keeImmii keeIm keeI Over Stemmed keeI Over Stemmed

kullessa kul kull Under Stemmed kull Under Stemmed

kuushebiihaa kuush kuus Over Stemmed kuush No error

lallabaanchoomaant

as
lallab lalla

Over Stemmed
lallab No error

lallat lal lall Under Stemmed lall Under Stemmed

leinu lei le Over Stemmed lei No error

lokkaan lokk lo Over Stemmed lo Over Stemmed

maanata maan ma Over Stemmed ma Over Stemmed

maarka maark maar Over Stemmed maar Over Stemmed

maccooccisiishshes

sa
maccoocc maccoocc Under Stemmed maccoocc Under Stemmed

maleeshshata malees mal Over Stemmed malees No error

maru mar ma Over Stemmed ma Over Stemmed

After improvement have been done, the new stemmer was evaluated on the same set of test

data (TS1 with 1385 words and TS2 with 1040 words) that was used for the first version of

Kambaata stemmer discussed in section 4.8.2. This was done in order to see the effect of

the improvements on the performance of the stemmer. Accordingly, the percentage and

number of over stemmed and under stemmed words were reduced to 2.60% (63 words) and

73

0.54% (13 words) respectively. The total errors account for 3.13% (76 words) and the

performance of the stemmer is enhanced to 96.87%.

TABLE 4-14: ACCURACY OF THE IMPROVED STEMMER

Test Set
Total Word

Count

Correctly

Stemmed

Stemmer

Accuracy

TS1 1385 1344 97.04%

TS2 1040 1005 96.63%

Combined 2425 2349 96.87%

Table 4-15 summarizes the overall enhancement in comparison with the first version. The

partial input test data from TS2 for this stemmer is given in Appendix IV and the

corresponding output of the stemmer is provided in Appendix V.

TABLE 4-15: PERFORMANCE COMPARISON OF THE FIRST VS. IMPROVED STEMMER

Stemmer

Version

Over

Stemmed

Under

Stemmed

Total

Errors Correctly

Stemmed

Words

Total

Word

Performance

(Accuracy)

Words pct. Words pct. Words pct. pct.

First

Stemmer
138 5.69% 16 0.66% 154 6.35% 2271 2425 93.65%

Improved

Stemmer
63 2.60% 13 0.54% 76 3.13% 2349 2425 96.87%

4.8.3.2. WORD COMPRESSION

As provided in Table 4-16, in terms of dictionary size, the compression for the whole test

data becomes 100 * (2425- 828) / 2425 = 65.86%. This result also shows the compression

of the dictionary size is increased by 0.4%.

The compression for correctly stemmed words becomes 100 * (2349-763) / 2349 =

67.52%. However, we could not get better compression ratio for this category which is

decreased by 0.6%.

TABLE 4-16: WORD COMPRESSION RATIO

Test set Stem (S)
Word

(W)

Compression

Ratio (C)

Correct Stem

(S)

Correctly

Stemmed

Word (W)

Compression

Ratio of

Correct (C)

TS1 440 1385 68.23% 406 1344 69.79%

TS2 388 1040 62.69% 357 1005 64.48%

Overall 828 2425 65.86% 763 2349 67.52%

74

4.8.3.3. PROGRAM EXCUTION TIME

To determine the execution time of the algorithm, the Python built in timeit.default_timer()

function from timeit package is used. The function starts counting when the stemmer starts,

and stops when the stemmer finishes execution. The program calculates the difference

between the initial and completion time and outputs the duration in seconds. The test is run

on Core i5 laptop computer that has 2.6 GHz processing unit, 4 GB memory and 500 GB

hard disk. Accordingly, it took 4.13 seconds to conflate 1385 words in test set one and it

took 3.208 seconds to conflate 1040 words in test set 2. Hence, the program is efficient and

faster. Multiple programs/processes running on the machine during the execution might

interfere and may elapse more time. During this program execution, only MS Office

applications (Excel, Word), Python IDLE Shell editor were running.

In conclusion, reasons for under stemming and over stemming are:

1) It absolutely was hard to bring the full list of suffixes mainly because of the rich

morphological behavior of the Kambaata language.

2) It has been challenging to define comprehensive list of context sensitive and

recoding rules. More conditions/rules are required based on a further study of the

morphology of the language.

3) Number of loan words such as forograammata (programme), tiraatiri (theater) and

aksuumaakka (Aksumite) are not conflated correctly.

4) Words with spelling errors usually result in incorrect results.

4.9. FINDING OF THE STUDY

In this study, a context-sensitive longest match stemmer is designed using rule based

approach for stemming Kambaata text and it conflates word variants to their respective

root. Sample test set of 2425 words were used as a test set to evaluate the performance of

the stemmer and the result showed 96.87% accuracy for the improved final stemmer. A

dictionary reduction of 67.52% is also achieved for correctly stemmed words. The next

chapter discusses conclusions of findings and recommendations for future research.

75

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1. CONCLUSION

Analysis of the morphology of Kambaata words presented in Appendix VI and VII and

literature review reveals that the language is rich morphologically. The types of affixations

such as suffixes, infixes, reduplication and compounding and concatenation of suffixes in

the language contribute a lot in generating rich morphological variants and make the word

formation process complicated in Kambaata.

This is why attempting to conflate Kambaata words manually is very tedious and extremely

difficult. For this reason, applying automated conflation procedure such as stemmer is

extremely important in NLP applications.

In this study, the researcher employed rule based stemming approach with longest much

technique. The stemmer has 20 groups of suffix removal rules that remove more than 6299

suffixes with longest match first remove fashion. The stemmer is also context sensitive with

255 context sensitive and recoding rules defined in it. So as to apply the longest match

technique, all possible long suffixes (whole list of concatenated suffixes with in the corpus)

in addition to the basic suffixes were collected from large corpus of 117,198 words with

26,731 distinct words.

This stemming algorithm does not just remove suffixes, but also takes exceptional scenarios

into consideration and stems them by applying substitution and context sensitive rules. The

suffix removal and substitution and context sensitive rules are utilized only if specific

circumstances are satisfied, e.g. the resulting stem must have a certain minimal length. The

majority of rules have got a condition depending on the length of the remaining stem. The

length is the number of characters or letters (either vowel or consonant) that exist in the

resulting stem, where each letter is counted as one. These conditions have to stop removing

of characters which appear to be a legitimate suffix but are portion of the stem. The

existence of these rules makes the stemmer a context sensitive. The contexts are discovered

based upon the comprehensive study of the morphological behavior of Kambaata language.

76

From the evaluation carried out on the selected test sets of the study, it can be demonstrated

that the algorithm stems words with an accuracy of 96.87% with an error rate of 3.13%.

 It has been noticed that good performance cannot be attained with only suffix

removal in Kambaata language.

 The explored rule-based stemmer is both precise by stemming words effectively

with accuracy of 96.87% and very fast by stemming 330 words per second in

average.

 The improved stemmer stems words of separate data sets with nearly comparable

performance. i.e. 97.04% accuracy registered on test set one (TS1) and 96.63%

accuracy registered on test set two (TS2), the overall accuracy being 96.87%.

Nevertheless, this result may possibly change on various data sets of other domain.

 The main challenges in Kambaata for stemming words is its rich and complex

morphology, i.e. words are formed making use of multiple (concatenated) suffixes,

irregularities through infixation, compounding, blending, and reduplication of

affixes.

 The most difficult thing in exploring stemming rules for Kambaata words is

discovering a rule which works efficiently for most or several set of words.

Generally, there is usually exception whenever one rule is defined for a number of

group of words.

 The other challenge is that the language is a little explored with regards to its

linguistic feature, most importantly, its morphology. The morphology of Kambaata

is not well studied in the linguistic discipline. Thus, the researcher could not find

enough linguistic resources except Dr. Treis Yvonne’s research works.

77

5.2. RECOMMENDATION

The researcher believes this study as a big step towards finding algorithm for stemming

Kambaata words for different NLP applications. This research is believed to be a baseline

for future scientific studies in the field of NLP in particular and Computer Science and

Information Sciences in broad sense.

This research work could possibly have downsides and even more enhancements might be

needed to improve the algorithm’s accuracy and the efficiency of the stemming process. As

observed in the study process, errors produced can mostly be improved possibly by

identifying a lot more context sensitive and substitution rules and/or incorporating more

suffixes to the suffix dictionary. In some cases, removing suffixes that adversely affect

some words may also improve the error rate for the other group of words.

A stemming algorithm design is attempted for stemming Kambaata words with the

exception of the reduplicated and compound words. A considerable move for future

enhancement of Kambaata words stemming algorithm could be a study on stemming

techniques for reduplicated and compound words.

The researcher recommended potential open research areas in one or combination of the

following areas.

 The stemmer can be one components for designing other NLP tools like

morphological analyzer, machine translation, word frequency counter, and

automatic text summarizers for Kambaata language.

 Researches or research projects could be performed on building Kambaata

information retrieval system making use of this stemming algorithm to access large

amount of Kambaata words and observe its impact over recall and precision.

 It would also be really fascinating to explore stemming algorithm applying table

lookup and statistical conflation techniques and notice how it performs for

Kambaata language as an alternative stemming technique.

 NLP applications need standard corpus preparation. Hence, preparing the standard

corpus for Kambaata NLP researches could also be another research opportunity in

the field.

78

REFERENCES

[1] J. B. Lovins, “Development of a stemming algorithm,” Mechanical Translation and

Computational Linguistics, vol. 11, no. 1 and 2, 1968.

[2] D. Sharma, “Stemming Algorithms: A Comparative Study and their Analysis,”

International Journal of Applied Information Systems, vol. 4, no. 3, pp. 1-6, 2012.

[3] W. B. Frakes, “Stemming algorithms. In Frakes,” in Information retrieval: data

structures and algorithms: Prentice-Hall, 1992, pp. 131-160.

[4] G. Salton, “Introduction to Modern Information Retrieval,” McGraw-Hill, 1983.

[5] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval, New York:

Addison Wesley, 2011.

[6] M. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130-137,

1980.

[7] N. Alemayehu and P. Willet, “Stemming of Amharic Words for Information

Retrieval,” Literary and Linguistic Computing, vol. 17, no. 1, pp. 1-17, 2002.

[8] B. O. Alijla, “Stemming in Natural Language,” Faculty seminar, Department of

Information Technology System, Faculty of Information Technology, The Islamic

University of Gaza, 2009.

[9] J. A. Hugh, E. Williams and S.M.M Tahaghoghi, “Stemming Indonesian language,”

28th Australian Computer Science Conference (ACSC), Conferences in Research and

Practice in Information Technology, vol.38. pp.1-8, 2005.

[10] H. Harmanani, W. Keirous and S. Raheel, “A Rule-Based Extensible Stemmer for

Information Retrieval Application to Arabic,” The International of Arab Journal of

information Technology, vol.3, no.3, pp.265-271, 2006.

[11] G. Salton, Automatic text processing: The Transformation, Analysis, and Retrieval of

Information by Computer, 1st ed. Reading, Mass. [etc.]: Addison-Wesley, 1989.

[12] G. Berhe, “A Stemming algorithm development for Tigrigna language text

documents”, Master’s Thesis, Addis Ababa University, Addis Ababa, 2001,

unpublished.

[13] P. Birungi, “Improved Strategies for Employment and Human Resources Utilization

in the Information and Documentation Sector,” Strategies for Human Resources

Development for information management in Africa, Ed. 49-57, Addis Ababa:

UNECA, PADIS, 1995.

[14] A. Alemu and L. Asker, “An Amharic Stemmer: Reducing Words to their Citation

Forms,” The Association for Computational Linguistics, Prague, Czech Republic, June

2007.

[15] D. Tesfaye, and E. Abebe, “Designing a Rule Based Stemmer for Afaan Oromo Text,”

International journal of computational linguistics (IJCL), vol. ED-1 (2), October

2010.

[16] Y. Fisseha, “Development of Stemming Algorism for Tigrigna Text,” Master’s Thesis,

Addis Ababa University, Addis Ababa, June 2011, unpublished.

[17] L. Lessa, “Development of stemming algorithm for Wolaytta text,” Master’s Thesis,

Addis Ababa University, Addis Ababa, July 2003, unpublished.

[18] M. Kedir, “Designing a Stemming Algorithm for Silt’e Language,” Master’s Thesis,

Addis Ababa University, Addis Ababa, June 2012, unpublished.

79

[19] Y. Treis, A grammar of Kambaata (Ethiopia), Part I: Phonology, Nominal

Morphology and Non-verbal Predication, 1st ed. Köln: Rüdiger Köppe, 2008.

[20] Y. Treis, “Relativization in Kambaata from a typological point of view,” In: Zygmunt

Frajzyngier and Erin Shay (eds.), Interaction of morphology and syntax: Case studies

in Afroasiatic, pp. 161-206, Amsterdam/Philadelphia: Benjamins. 2008b.

[21] K. Kawachi, A grammar of Sidaama (Sidamo), a Cushitic language of Ethiopia, 1st

ed. Buffalo, NY: State University of New York, 2007.

[22] “Ethnologue: Languages of the World,” Ethnologue, 2017. [Online]. Available:

https://www.ethnologue.com.country/ET [Accessed: 12- May- 2017].

[23] J. Project, “Language – Kambaata, Joshua Project,” Joshuaproject.net, 2017. [Online].

Available: https://joshuaproject.net/languages/ktb. [Accessed: 11- Dec- 2017].

[24] “Languages and Cultures of Sub-Saharan Africa,” 2017. [Online]. Available:

http://llacan.vjf.cnrs.fr/index_en.php. [Accessed: 12- May- 2017].

[25] M. Hafer and S. Weiss, “Word Segmentation by Letter Successor Varieties,”

Information Storage and Retrieval, vol. 10, no. 371-385, 1974.

[26] J. Dawson, “Suffix removal for word conflation,” In Bulletin of the Association for

Literary and Linguistics computing, vol. 2, No. 3, pp. 33-46, 1974.

[27] C. D. Paice, “Another stemmer,” ACM SIGIR Forum, vol. 24, no. 3, pp. 56-61, 1990.

[28] G. Adamson and J. Boreham, “The Use of an Association Measure Based on Character

Structure to Identify Semantically Related Pairs of Words and Document Titles,”

Information Storage and Retrieval, vol. 10, pp. 253-260, 1974.

[29] M. Wakshum, “Development of Stemming Algorithm for Afaan Oromo Text,” M. Sc.

Theses, Addis Ababa University, 2000, unpublished.

[30] J. Savoy, “Stemming of French Words Based on Grammatical Categories,” Journal of

American Society for Information Science, vol. 44, no. 1, pp. 1-9, 1993.

[31] P. Willett, “Automatic indexing of documents and queries,” Document retrieval

systems, vol. 21, no. 2, pp. 4-9, 1988.

[32] S. Khoja and R. Garside, “Stemming Arabic text,” Computing department, Lancaster

University, Lancaster, 1999.

[33] Y. Treis, “Kambaatissata: Yanna, maauta, heessa [The Kambaata language: proverbs,

tales and legends],” La Trobe University: Research Centre for Linguistic Typology,

2008.

[34] S. Walker & R. M. Jones, “Improving subject retrieval in online catalogues,” in

Stemming, automatic spelling correction and cross reference tables, London: The

Polytechnic of Central London, pp. 2, 1987.

[35] M. P. Lennon, D. Tarry, and P. Willett, “An evaluation of conflation algorithms for

information retrieval,” Journal of Information Science, vol. 3, pp. 177-183, 1981.

[36] C. D. Paice, “An evaluation method for stemming algorithms,” In Croft and van

Rijsbergen, pp. 42-50.

[37] T. Tewodros, “Word formation in Tigrinya” M.Sc. Theses, Addis Ababa University,

1993, unpublished.

[38] W. Frakes, R. Baeza-Yates, “Information Retrieval: Data Structures and Algorithms,”

NJ: Prentice-hall, 1992.

80

[39] J. Mayfield and P. McNamee, “Single N-gram stemming,” In proceedings of the

26
th

Annual International ACM SIGIR conference on research and development in

information retrieval, pp. 415-416, Toronto, Canada, ACM Press, 2003.

[40] M. Melucci, Introduction to Modern Information Retrieval, New York, 2003.

[41] G. Salton, H. Wu and C. Yu, “The measurement of term importance in automatic

indexing,” Journal of the American Society for Information Science, vol. 32, no. 3, pp.

175-186, 1981.

[42] J. Xu and W. Croft, “Corpus-based stemming using co-occurrence of word variants,”

ACM Transactions on Information Systems, vol. 16, no. 1, pp. 61-81, 1998.

[43] M. Popovic and P. Willett, “The Effectiveness of Stemming for Natural-Language

Access to Slovene Textual Data,” In Journal of American Society for Information

Science, vol. 43, no. 5, pp. 384 -390, 1992.

[44] T. Z. Kalamboukis, “Suffix stripping with Modern Greek,” Program, vol. 29, no. 3,

pp. 313-321, 1995.

[45] R. Krovetz, “Viewing Morphology as an inference process,” In proceedings of the

16
th

Annual International ACM SIGIR conference on research and development in

information retrieval, pp. 191-202, ACM New York, 1993.

[46] C. Paice, “Method for evaluation of stemming algorithms based on error counting,”

Journal of the American Society for Information Science, vol. 47, no. 8, pp. 632-649,

1996.

[47] A. Spencer, “Morphological Theory: An introduction to word structure in generative

grammar,” Oxford: Blackwell Publishers, 1991.

[48] Gregory T. Stump, “Inflectional and Derivational morphology,” Kentucky University,

USA: Cambridge University Press, 2001.

[49] A. Banta, “Kambaatissa-Amharic-English Dictionary,” KT Zone Education Bureau,

Durame, Ethiopia, 2016.

[50] Y. Treis, “Kambaata Numerals and Denumerals Revisited,” LLACAN.

[51] Y. Treis, “Motion events in Kambaata,” Annual Publications in African Linguistics,

vol. 5, pp.197-226, 2007.

[52] Y. Treis, “They are only two, like the teats of a donkey: Kambaata Denumerals

Revisited,” Mechthildian Approaches to Afrikanistik: Advances in language based

research on Africa - Festschrift fur Mechthild Reh, Rudiger Koppe, pp.339-366, 2017.

[53] Y. Treis, “Past tense in Kambaata (Cushitic),” In Workshop on the meaning of past

tense morphology, 2016.

[54] Y. Treis, “Categorial hybrids in Kambaata,” Journal of African Languages and

Linguistics, De Gruyter, pp. 215-254, 2012.

[55] Y. Treis, “The Perfective Paradigms of Kambaata: Double Agreement, Defectiveness

and Overlaps,” 19th International Conference of Ethiopian Studies, Warsaw, 24-28

August 2015.

[56] Y. Treis, “Future in an aspect-marking language: The example of Kambaata,” Atelier

sur le future (Operation “Le temps dans les langues africaines”) CNRS-LLACAN

Villejuif, May 2011.

[57] Y. Treis, “Purpose-encoding strategies in Kambaata,” Afrika und Übersee, vol. 91,

pp.1-38, 2010.

81

[58] Y. Treis, “Expressing future time reference in Kambaata,” Nordic Journal of African

Studies, vol. 20, no. 2, pp.132-149, 2012.

[59] Y. Treis, “Negation in Highland East Cushitic,” Burning Issues in Afro-Asiatic

Linguistics, Newcastle upon Tyne: Cambridge Scholars Publishing, pp. 20-61, 2012.

[60] Y. Treis, “Number in Kambaata: A category between inflection and derivation,”

LLACAN.

[61] Y. Treis, “Form and Function of Case Marking in Kambaata,” Afrikanistik online,

2006.

[62] B. Yimam, “Ye amargna sewasew (Amharic Grammar),” EMPDA, 1995.

[63] L. Galambos, “Lemmatizer for Document Information Retrieval Systems in JAVA,”

SOFSEM 2001: Theory and Practice of Informatics, pp. 243-252, 2001.

[64] M. Lennon, D. Peirce, B. Tarry and P. Willett, “An evaluation of some conflation

algorithms for information retrieval,” Information Scientist, vol. 3, no. 4, pp. 177-183,

1981.

[65] R. M. Kaplan, “A method for tokenizing text,” Inquiries into words, constraints and

contexts, pp. 55, 2005.

[66] D. Harman, “How effective is suffixing?” Journal of the American Society for

Information Science, vol. 42, no. 1, pp. 7-15, 1991.

[67] “The history of Ethiopian national literacy campaign,” Ethiopian History, 2017.

[Online]. Available: http://www.ethiohistory.com. [Accessed: 26- Nov- 2017].

[68] “Translation-works”, Bible Society of Ethiopia, 2017. [Online]. Available:

http://biblesociety-ethiopia.org. [Accessed: 26- Nov- 2017].

[69] Md. Islam, Md. Uddin and M. Khan, “A Light Weight Stemmer for Bengali and Its

Use in Spelling Checker,” Center for Research on Bangla Language Processing,

BRAC University, Dhaka, Bangladesh.

[70] V. Vaishnavi, W. Kuechler, and S. Petter, "Design Science Research in Information

Systems," 20 12 2017. [Online]. Available: http://www.desrist.org/design-research-in-

information-systems/. [Accessed 09 03 2018].

[71] S. Srinivasan, ZP. Thambidurai, “STANS Algorithm for Root Word Stemming,”

Information Technology Journal, vol. 5, no. 4, pp. 685-688, 2006.

82

APPENDIXES

APPENDIX I: SUFFIXES COMPILED FOR THE STEMMER

Total suffixes compiled for the development of Stemmer for Kambaata are 6299. Here,

randomly selected 899 suffixes (14.23%) are presented.

aabeechchii

aab’a

aachchinne

aada

aagan

aagu

aahaanki’nne

aahanki'nne

aahansa

aaii

aaindoo

aakas

aakka

aakkaachchina

aakkaahaansa

aakkaahas

aakkaaneet

aakkaantassan

aakkaatanki’nne

aakkabikkii

aakkakki’nne

aakkantissa

aakkassaa

aakkatan

aakkatansinii

aalla

aamata

aamiga

aamitii

aammatii

aammigan

aammindoo

aammiyarra

aamoonin

aamus

aanat

aanchichchu

aanchiihanse

aanchisiga

aanchoochch

aanchos

aanchuhaa

aanchunkus

aanchuta

aaneen

aanii

aani’nne

aankassaa

aankii’nne

aanki’nnetannee

aannatisu

aannihanniin

aanniihaa

aannin

aannua

aannunkus

aano

aansa

aanseemmada

aansiin

aansitaahaarra

aansiyye

aantaassa

aantakki’nne

aantannee

aantassa

aanteenan

aantoo

aaqq

aaqqaanchitannee

aaqqaannu

aaqqami

aaqqanoru

aaqqeei

aaqqi

aaqqinaamm

aaqqitunta

aaqqyye

aariichch

aarraan

aashaha

aashshaana

aashshassa

aashshimata

aasi

aassaarra

aataa

aatanne

aatayyoont

aatisano

aatuhuu

aautaa

aa’nnu

abii

abina

abut

achchenii

achchoo

ache

ae

aeemmaau

aeennogaa

aeet

aggiin

ahaarra

ai

aiinii

aisiisano

aiyyee

akk

akkaahaans

akkaantasii

akkachch

akkassaba

akkatii

akktaa

allu

amaanchchus

amaanchuhuu

amaaniin

amaannusii

amanina

amanobaan

amanonee

amanora

amanosiru

amanotanneehaat

amanuanii

amayyooi

amba’a

ameemmagiinii

ameennoba’a

amigiitannee

amiihansii

amiintassa

amisigiitannee

amm

ammahaa

ammataa

ammeei

ammeena

ammeet

amme’nne

ammiyye

ammoe

ammohanni

ammoo

ammooho

ammoondaa

ammoruu

ammossagiin

ammyye

amooha

amo’nne

amumbo

amumbu

amunbogga

amusee

amu’nnaachchin

anaka

anataa

anbikokii

anchaakkaachch

anchaakkase

anchaanii

anchassa

anchchi

anchigiinii

83

anchiihans

anchita

anchoontaabaibdo

anchunku

anchuu

aneentibe

anii

aniyan

anka

ankassa

ann

annase

annen

annibikkiinkaat

anniichch

anniinka

annu

anoba

anobiiha

anoee

anoga’a

anohaa

anoki’nne

anondoo

anonnega

anoohaa

anora

anos

anosi

anosiihaa

anositannee

anossaga

anota

ano’nee

anqaxaanin

ans

ansaan

ansaannu

ansat

anseemmada

anseennogana

ansiichchisin

ansiisaanchua

ansiisaannuhuu

ansiisiihaa

ansina

ansit

ansiteenan

ansitina

ansiyye

ansuanii

ansu’nnaachchii

antaada

antaai

antaaindoo

antaaraa

antaassaarra

antaba’a

antaniyan

antasen

anta’nne

anteeii

anteenanta

anteentaau

anteet

anti

antiyan

antoodaat

antooii

antoora

antoos

antoou

antumbogga

antumburra

antumbuu

antu’nnaan

anuarra

aqanchi

aqqa

aqqaankeru

aqqamayyoou

aqqami

aqqammanii

aqqammiyye

aqqancha

aqqanchi

aqqanchu

aqqansii

aqqansiishsha

aqqansiyye

aqqantaaiihu

aqqanteeii

aqqantoo

aqqataa

aqqeeiichchii

aqqeeu

aqqitaa

aqqitee’nne

aqqituntaa

aransitan

aro’ootaa

as

aseet

asibii

asiin

asiteenan

assaamm

assano

asseenan

assii

assinamm

assitaa

assitan

assiteenantaru

assiyye

asu

ataakka

ataba’a

atans

atenii

ato

atoon

atora

att

attaau

atteenta

attoohanniichch

atu

atussaa

atutauta

aumbogga

ayoou

ayyi

ayyooii

ayyoonne

ayyoou

a’aanchii

a’ammoochch

a’ayyoondoo

a’nnaamm

a’rro’oochchin

baassaa

baigaa

baina

ba’a

beenanta

biihuu

boommigiin

ccitaabuu

chchata

chcho

chchu

chi

choochch

chuhuu

chut

daakkaan

daneen

deentaga

doogiin

eano

ebii

echchahaa

eeananta

eebi

eeccanchiichch

eechchie

eechchi’i

eechchoohans

eechchora

eechchuhu

eechchuta

eedaat

eegu

eehaarra

eehansa

eehi

eehussa

eeiihu

eekkebaan

eem

eemaaneetindoo

eemataa

eemm

eemmaahaan

eemmaau

eemmaga

eemmaranka

eemmasi

eemmi

eemmiiha

eemu

eenaamm

eenaanki’nne

eenanatara

eenaniyansa

eenantaga

eenantasi

eenatansa

eenayyoommae

84

eeni

eenindoo

eenmgaa

eennaga

eenni

eennisi

eennoga

eennoki’nne

eennonii

eennootii

eennosi

eennossa

eennoua

eennuga

eenokkoonta

eenooma

eentaa

eentaatannee

eentahanniichch

eentandoo

eentase

eentassa

eentiraan

eenumbbussana

eenumboorraan

eenumburruu

eenumbuuta

eeqqa

eeraan

eesamimba’a

eesanondoo

eesanora

eesayyoou

eeseenno

eeshshaakka’nne

eeshshoebiihaat

eesimat

eessaasi

eesu

eetaa

eetaando

eetimba’a

eeu

ee’nneet

egan

eiihu

emata

enanta

ennaga

entagan

eraa

esi

esiru

eta

eyesuusenii

e’eenno

e’eetii

ga

gaantibay

gano

geenantaarra

giin

gitoou

gooiihu

gumbut

haantindoo

hans

hela

hsessa

hshaachchisin

hshaakkaachch

hshaakkas

hshaamita

hshaantassa

hshagiinii

hshanne

hshase

hshat

hsha’nne

hsheemmii

hshe’e

hshiyessa

hshodanii

hshoommiihu

hshossa

huu

ian

ibaaneet

ibiihaat

iccammeemm

iccantaa

icceeu

iccinaamm

iccu

ichchibiihuu

ichchina

ichchona

ichchube

ichchunkus

ichchutaa

ida

igaamint

igaamuan

igii

igoon

igoonnata

iguta

ihanki’nne

iibali

iichch

iichchiin

iichchis

iichchi’i

iichchoon

iichchuta

iigunta

iihaanse

iihank’nne

iihat

iin

iinin

iinkasen

iinneet

iintas

iintasi’nnu

iirana

iiseenno

iishhsata

iishshaachch

iishshaanii

iishshas

iishsheet

iisii

iissayoo

iita

iiteena

iittaakkaantas

iitu

ikk

ikkeei

ikkibii

ikkoo’nne

imaachchissan

imaaneetii

imaat

imanka

imat

imbahe

immaa

ina

inaamm

inaammiihu

inaan

inba’a

ineet

inka

innata

inneet

innitii

inommida

inoommida

inoommiriichch

ins

insan

insun

intis

inunta

inyoogiin

ira

iro’oos

isa

isaamm

isaanchiihaa’nne

isaanchiinta’nnee

isaanchoomata

isaanchuhuu

isaanchuse

isaanchu’nne

isaanki’nna

isaanniin

isaannunku

isaata

isameen

isammii

isan

isanno

isanoga

isanokke

isanonneerra

isanoohu

isanosba’a

isanosigiin

isanossa

isanossanii

isanoua

isansiyye

isantooda

isayyooii

iseemma

iseenaan

85

iseennoba’a

iseennose

iseenumburuu

isega

ish

ishsassa

ishshaakkasi

ishshagiin

ishshasigiin

ishshataa

ishsheei

ishshessa

ishshiyye

ishshohe

ishshoohu

ishshoommibiichch

ishshossa

isibiihu

isigiinii

isiichchissan

isiinii

isiisaancho

isiiseemma

isiishshe

isiisiin

isiissayyoossa

isiisseeu

isis

isitannee

isonneta

iso’oot

issaagiin

issaaiita

issaara

issaassara

issabii

issana

issantoo

issataa

isseenan

isseentaachch

isseeu

issiishshosseehu

issoobiichch

issoossa

issumbuarra

ista

isumbogga

isumbus

isunta’nne

it

itaaga

itaahaarra

itaaiit

itaakka

itaando

itaara

itaaru

itaassaba’a

itaau

itaneen

itanneehaa

itassa

itayyooi

itayyoossanii

iteega

iteena

iteenanii

iteenantandoo

iteenata

iteennan

iteent

iteentaahu

iteentada

iteentando

iteentasigii

iteenumboochch

iteese

iteeu

itentada

itimbua’a

itmannaakkat

itoobaanin

itooganka

itooiiha

itoont

itooraa

itoose

itoossada

itossata

ittaa

ittaakka

ittaakkaan

ittaakkachch

ittaakkasii

ittaakkatanneeha

ittaaklkataa

ittaantassa

ittakk

ittanne

itta’nne

ittichch

ittiichchii

ittiinin

ittisigiin

ittooii

itubu

itumboggaa

itumbuhee

itun

itunta

ituta

ixu

ixxaan

ixxiineet

iyaan

iyan

iyanse

iya’nne

iyeen

iyigaa

iyitooiihu

iyyaataakkat

iyyenii

i’nne

i’nnu

kkaaii

kkasii

kkoou

laakkata

lan

lataa

llaashshahaa

los

maata

mas

mbutanee

miin

mmee

mmoochch

moohu

n

nase

nchaakkaahaa

neen

nin

nkassa

nnaammii

nneya

noegiin

nsaanchu

ntaa

ntanne

nteendoo

ntis

nu

oaamu

obay

obiita

oda

oe

ogan

ogiinin

ohanni

okkega

ona

onta’nne

oobii

oochcheetindoo

oochchisee

oodiintase

ooga

oogiichch

oohaarra

oohanse

ooichch

ooiihuu

ooma

oomaanii

oomano

oomassa

oomida

oommanise

oommigan

oommita

ooneent

oonina

oonki’nneechch

oonnee

oontakk

oontasen

oonta’nnen

oontigiin

oontis

oorii

oos

oosida

oosirii

oota

ootanee

86

ootii

ootisseenan

ooxximaanii

ooxxitii

oo’oot

oseda

osida

osiraa

ossagiin

otaa

otanneehaat

o’oo

o’oochchisin

o’oonta

o’ootii

qo

raakka

reeindo

roda

saahaa

saakkagiin

saanchiihaa

saannu

san

sanseen

sanua

saqqu

sebairiinin

seenan

seennua

sega

shshiyyessa

shshose

sibaiiha

sibuu

siibiihu

siihaa

siisaanchuta

siisanoo

siishiyye

siishshata

siishshiyyessa

siisii

siissaau

siisu

sindo

sishshiyyeessa

sitaassa

siteenta

siyaa

sooba

sooiihu

sossagiin

ssaarii

ssabaiga

ssabikkii

ssariin

sseianan

ssoou

sumbut

sutaa

taabiin

taahaarra

taaindoo

taaraa

taassaga

taga

tanne

tans

tayyoou

teeii

teenaneen

teenoochche

teentaau

teente’e

teera

tessa

tindo

tiyaneet

toodaa

toogu

tooiihu

toontiichch

toot

tota

tumboga

tumburru

tun

tu’nnaachchin

uabe

uandoo

uansa

uariichchii

uarriinii

ua’ano

ue

uhu

ukk

umbanne

umboddan

umbogiihaatii

umbossaarra

umbuarra

umburru

umbussa

umbutii

ummaaha

unbu’nnee

unkaa

unki’nne

unkussa

unne

untakki’nne

untis

urru

usee

usi’nnu

ut

utans

uuha

u’nnaa

u’nnu

xxi

yeessa

yiteen

zaainii

’aau

’ammoomm

’eetaa

’nne

’oot

87

APPENDIX II: AFFIXES FOR RECODING RULES

Suffixes Substitution

Condition:

amb, mbun, mbaamm, mbaammi, mbeemm,

phph, phphee, phpheen, phpheennogii, phphi, phphii,

phphiihaa, phphiin, phphinun, phphisiishsha, phphit,

phphitaau, phphitan, phphitannee, phphitumboochch,

phphitunta, phphu, phphua, phphuhaa, phphunta

b

if word does

not start with

“a”

jeeiya, jie, jj, jja, jje, jjee, jjeegiin, jjeehaa, jjeemm,

jjeemmi, jjeen, jjeense, jjeet, jjeeu, jjela, jji, jjiyan,

jjiyans, jjiyye, jjo, jjo’nneda, jjoda, jjodaa, jjoga, jjogiin,

jjohendo, jjondoo, jjoo, jjoom, jjoomm,

jjoommigiineet, jjoonsaahu, jjoosii, jjos, jjose, jjosee,

jjosi, jjosibikkii, jjosiga, jjosindoo, jjossa, jjossagiin,

ndaami, ndaamm, ndaammi, ndaammii, ndaammiihu,

ndan, ndeemm, ndeemm, ndeemmii, ndeemmita, ndo,

ndoombaan, ndoomida, ndoommi, ndoommida,

ndoommidaa, ndoommiganka, ndoonsi, ndun, ujj,

xamaantassa, xamata, xammata, xxaanta, xamaantassa,

xxamanoba’a, xxamanoo, xxamat, xxamata, xxamataa,

xxammaantassa, xxammas, xxammassa, xxammastana,

xxammat, xxammata, xxammataa, xxammatana,

xxammatansa, xxammee, xxanchu, xxans,

xxansanossaru, xxansiyye, xxantaa, xxantaasira,

xxantaassara, xxantaau, xxantun, xxmata

d

if word does

not start with

“xa”

nf, nfaamm, nfaammi, nfaammigu, nfaammii, nfan,

nfoommi, phphaqqant, phphaqqantoou
f

if word starts

with “a”

ngaamiru, ngaamm, ngaammiganka, ngaannu, nge,

ngeemm, ngi, nginne, ngise, ngit, ngita, ngitaa,

ngoommi, ngumbudda, ngumbutanneehaat, ngun,

qqamaannu, qqaman, qqameenan, qqant, qqantooiihu,

qqantooiihui, qqantoou

g

kk, kkaaga, kkan, kkau, kkeemm, kkeenuntaa, kkichchu,

kkichchua, kkoohu, kkunta, nk, qqamaamm,

qqamaanchu, qqamaanniin, qqamaannu, qqamaannus,

qqamanohanniga, qqameemma, qqami, qqamii,

qqamiinii, qqamissa, qqamm, qqammaannii, qqamu,

qqamuntaa, qqancha, qqanchaan, qqanchu, qqano,

qqansinaammi, qqansu, qqant, qqantaa, qqantaau,

qqanteen, qqanteenumburru, qqaqqansiin, qqee,

qqiteeiita

h
if word starts

with “b”

nn, nneemm, nneemmii, nnoommii l

if word does

not start with

“ma”

nkeemm k

’mmami, ’mmamii, ’mmantaau, ansiiseemma, ncha,

nchata, nchchuta, nchi, nchiin, nchu, nchuhuu, nsi,
m

88

nsiisii, nsiisussa, nsishsho, nsitan, nsu, ntaa,

ntaa’nneriichch, ntaaba’a, ntaahaarra, ntaahaarraa,

ntaaii, ntaara, ntaasira, ntaassa, ntaassariin, ntaatannee,

ntaau, ntataa, ntee, nteen, nteeiita, ntooda,

ntoonte’eechch, ntoos, ntootinne, ntoou, ntu’nna

’nnaqqancha, ’nnaqqanchiinii, ’nnaqqant,

’nnaqqantaaga, ’nnaqqantee
n

nn, nno, nnoommida r
if word does not

start with “wa”

ccameenii, ccamii, ccamuha, ccant, ccantaaga,

ccantaaha, ccantunta, ccaqqamu, ccaqqanchahaa,

ccaqqanchiin, cceekkeet, cci, ccitaa, iccamiinii,

nsaamm, nsaammi, nsaammii, nsaammiihu, nseemm,

nseemmiru, nseen, nsoomm, nsoommi, nsoommida,

nsoommigiin, nsoommiigiin, nsoommogiin, nsoongiin,

nsoonsa, nsun, nsunka

s

if word does

not start with

“xa”

chchaan, chchas, chchat, chche, chcheeu, chchessa,

chchiyye, chcho, chcho’nneda, chchoda, chchoga,

chchoommigiin, chchora, chchossada, ntaamm,

ntaammigaa, ntaanse, ntan, ntantaaiita, nteemm,

nteeneet, nteeneetba’a, ntit, ntita, nto, ntoni, ntonii,

ntoommida, ntun, xxayyoo, xxi

t

cco x

ccano, cci, ccit, jj, jje, jjessa, jjo, jjoe, jjoochch, jjos,

jjosidaa, nzaankee, nzan,
z

if word does

not start with

“ha”

89

APPENDIX III: RULES FOR REMOVING SUFFIXES

Rule for Step 1:

if ((word ends on aqqansiisaanchiichch) && (length of the remaining part is greater than

1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 2:

if ((word ends on

aankiInnehanniichch|eenayyoomakketannee|inaammitanneehaatii|iteenantahanniichch|is

aanchiihaankiInne) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 3:

if ((word ends on

aankinnehanniichch|aaqqaanchisitannee|ansiissaahaarranii|hshoommitanneehaat|isaanc

hiihankiInne|isaanchoohankiInne|ittaakkaachchiInne) && (length of the remaining part

is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

90

Rule for Step 4:

if ((word ends on

ammeenniyaarranka|anchaakkaachchina|ansiisaannitannee|aanchitannehaatii|aqqansiis

aanchiya|aqqansiisaannuhaa|aqqansiisseenanta|eiseenuInnaeechch|iishshoomaantassa|i

noommihanniichch|isaanchiintaInnee|isanotanneehaatii|ishshoommibiichch|isseentaachc

hinaa|iteentahanniichch|itoontihanniichch|ittaakkatanneehaa|nteentahanniichch|siisseent

aachchii) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 5:

if ((word ends on

aakkaahaankiInne|aaqqaanchitannee|aaqqansiisaanchi|eennogiitannehaa|ammohanniich

chii|amuInnaachchinne|anchaakkaachchin|anchoontaabaibdo|aqqansiisseenata|aqqantee

ntaachch|ateentahanneenin|atteenumbuaaggii|beentahaaniichch|eechchaakkaachch|eena

ntariichchii|eesanotanneehaat|goommitanneehaat|hshaakkatanneeha|hshaakkatanneeha

…) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 6:

if ((word ends on

aakkaatankiInne|aammihanniichch|aankiInnebikkii|ichchitanneehaa|aankiInnetannee|aat

ayyoondoonii|aisiishshiyansa|amanotanneehaat|ameemmatanneeha|amumbonnetannee|a

nchchaakaachch|annibikkiinkaat|anonnehannigana|ansiisaanchutaa|ansiteentaranka|ans

91

uInnaachchii|antaasitanneeha|antoohanniichch|antumbutanneeha|aqqansiisaanchi…)

&& (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 7:

if ((word ends on

anonnehannigan|aanchoomaantas|amisigiitannee|eennossagiihaa|issaahaarrando|atteent

assadaa) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 8:

if ((word ends on

aakkaahaaInne|aakkaahaInnee|aanniichcheet|achchiichchin|eenoochchessa|aakkaantass

an|aakkaantaInne|ishshobiihaat|aakkatanneeha|aakkatansinii|aamiichchinne|aanchukkiI

nne|aankiInneenku|aanniintakkin|aansaqqachchi|aansiteenanta|aaqqiteenanta|amumboss

aarra|anchaakkachch|anchakkaachch|annaakkatanii…) && (length of the remaining

part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

92

Rule for Step 9:

if ((word ends on

aahaankiInne|aahanniichch|aakatansinii|aakkaachchii|iteentaachch|ansiisanseei|aakkaa

haansa|aakkaachchin|aakkaachchis|aakkaahaansa|aakkaahaInne|aakkaantasen|aakkaan

tassa|aakkakkiInne|aakkataaInnu|aammiriichch|aanchiihaans|aanchiihanse|aanchisigiin|

aanchitannee|aannihanniin|aanniichchin…) && (length of the remaining part is greater

than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 10:

if ((word ends on

aahankiInne|aahankiInne|aakkaahaans|eennaaggiin|isiisanseei|anqaxeechch|iteentibala|i

siisanseei|siisiishsho|isansanossa|aakkaahaans|aakkaahaant|ansitaniyan|eemmotannee|a

achcheetii|eennaaggiin|oontantassa|attooiichch|iichchissaa|aakkaahanne|isanobandoo|a

naantassaa|aakkaahansa…) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 11:

if ((word ends on

aachchinne|aachchissa|aadaakkata|ansiishsho|aqqammiyye|eedaatbaIa|amanoganka|siis

anseei|ansiishsho|siisanseei|siisanseei|aakkaachch|aakkaahans|ansiishsho|siisanseei|ansi

issara|ansiishsho|aeennosiga|ittaakkata|anoriichch|isubossara|innebiihuu|aahaaInnee|aa

hankInne|aahannigan…) && (length of the remaining part is greater than 1)) {

remove the suffix;

93

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 12:

if ((word ends on

aachchise|aaggiinii|aahaaInne|amanseei|ammeeIeru|isooindoo|isiishsho|hshotanne|eenu

mbrra|aanchuhaa|isiishsho|aakkaahaa|ammee’eru|iisanseei|eeminnita|ishshgiin|ayyoond

oo|immaanina|amiiechch|ittaakkat|anobandoo|iroIoonta|iininbala|amauobaIa|anchaakka

…) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 13:

if ((word ends on

aachchii|aachchin|aachchis|oontibii|achchuna|iyyaanta|isahossa|umbuuhuu|isahossa|oot

annee|iteenant|aanchiin|amanseei|ooriniin|siishsho|ubossaga|amanseei|amanseei|siishsh

o|hshooman|ogiichch|amanseei|eematina|eennogaa|eennogii|eenoogii…) && (length of

the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

94

Rule for Step 14:

if ((word ends on

aabunku|aachcha|aachche|aachchu|igiihaa|ebiihaa|antunka|tokoont|amanian|amanogu|h

shassa|ansussa|aakkata|eemassa|amanona|eennaga|amumbua|aIaannu|attiyan|atosina|a

sibiit|assabii|aaebaIa|aaggiin|aahaans|aahanne|aahansa…) && (length of the remaining

part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 15:

if ((word ends on

aachch|aachua|aacnhu|aaduma|anseei|iyyata|isussa|eganka|ansano|anseei|anseei|aoonii

|eechch|anseei|anseei|eemant|isndoo|aIanna|aaggii|eennas|eenoga|itaaga|attaan|aagiin|

aahank|aahans|aaiiha|uInnaa|eeiihu…) && (length of the remaining part is greater than

1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 16:

if ((word ends on

aabIa|aagaa|aagan|aagga|aIano|iyyat|amano|ancha|ansat|antee|autaa|ammao|aalaa|aa

gii|aahaa|aaihu|aaiit|aaita|aakas|aakat|aakka|aalla|aamii|aamit|aamma|aamme|aammi|

aammo|aammu|aamua|aamus…) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

95

remove last letter;

}

}

Rule for Step 17:

if ((word ends on

aabe|aabi|aabu|aada|anto|anoo|anog|aaga|aagi|aagu|aaha|aahu|aaii|aait|aame|aami|aa

mm|aamo|aamu|aana|aani|aank|aanm|aann|aano|aans|aant|aanu|aaqq|aara|aari|aaru|a

ase…) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 18:

if ((word ends on

aai|aam|aan|aas|aat|obo|aan|iin|nto|aIa|aau|aba|ada|aee|aga|aha|akk|amm|ama|ame|a

mi|aii|amo|amu|ana|ani|ann|ano|ans|ant|anu|aoo|aqi|aqq|aro|asa|ase|asi|ass|asu|ata|ati|

ato|att|atu|aua|auu|bai|bat|bba|bot|chi|cho|chu|daa|doo|eba|ebu|eeb|eeh…) && (length

of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 19:

if ((word ends on

aa|ae|ai|ak|am|an|as|at|au|be|bo|bu|ee|ei|en|eo|es|eu|ia|ie|ii|in|is|it|kk|oe|oi|on|oo|os|qi|

qo|ra|ro|ru|sa|se|si|so|ss|su|ta|te|to|ua|ue|ui|un|us|ut|uu|yi|yu|ee) && (length of the

remaining part is greater than 1)) {

96

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

Rule for Step 20:

if ((word ends on a|u|i|e|o|n|s|t) && (length of the remaining part is greater than 1)) {

remove the suffix;

if ((length of the remaining word is greater than 4) && (the remaining

word ends on double letter)) {

remove last letter;

}

}

97

APPENDIX IV: KAMBAATA WORDS BEFORE STEMMING

Un-stemmed words taken from test set two (TS2) are given below. This is not the whole

test data, rather one word for each corresponding stem is selected and presented.

aagaqqanchu aalota aaqqantee aassammeessaarra aazeenii abbaachch afaakka afeehaarra

afuu’lleeu agga agissaau agudanua alaphphitaau aleenin amaa’llancha amaarssaga amanta

amma’nnamussaa ammanaatuta anabbabamanooha angassa ankari annanna annunku

asi’mmu assamii awwa’nnaqqanchu azuta azzazosigiin baa’yyaatta baabbu’nnaachch

baaddaachch baasa baissaau bakkani barcumaa bargammo barraa baru beehancha beetii

bifa biixaakkaan birena bizzeenni bokku bonata booradisuhuu booyyeekkeehaa boqoon

bullaakkaachch bushagan caakkee calcalat ceemmit cu’mmisiisi cumuqus daaddaabbita

daddaabbee daftaraankassa dagamano danaamita dandaamba’a daqqinaamm dibeemma

digiirammaa dikkai diraamaan doo’rr dooi dullo duuhagiin duuni eebbaaga egedo

enkee’nniin eraantas ereeransanua etaru faareisanossa faduu faisano fanneena fanqalaansit

farrat fidallaan fintant foolooccat fulii fushsheennondoo ga’aata gaantuntaa gaazeexxataa

gabbancho gaffarsiisiin gagi gajaajjaakkaahaa galaxxisanonne galte gann gardabbaan gare

gashshaanchuta geemmaruse gi’iizi gidaanii giphphammat gobaanchuta gonsamanosi

gooca gooffoogan goolliteentaachch goonchuu gorruu gotu haabdoollichchut haasaawwaa

habantaa hadata hagaakkaachchis hagara haliin hamaam hammaakkaan hanqafamu

hansawwiichch haraaraga hasammoru hawwanka hayyaakkaan he’eeraan heellisu

heessa’aau hegeegiihans hezzeettoot higgaa higgo hiiramm hinca’ano hiqamanseei

hiramanian hogobo hooggo hoolamas hoolchutaans horanka hosisaassa hossootannee

hujachchessa hundaanka hunt ichchannebiihuu ihanora iillanosba’a iitta ilansano illeen

injiijjeen inkiiliin insantoo jaallaakkaahansa jeechchona kaa’llanossa kaamebiihuu

kaardaakkat kaasanseei kajjeelloda kalu kanteenoochchessa karammo kasaakkaanii

kee’mmubossaga keenatoon keisansii keu kichcheehchi kifilii kirrahaa kodataa kulammo

kulisantoos kulliyyessa kuushebii laagaakka laalloga lagaakkaa lallabaanchoomaantas

lamaqqat lehiqqi leinii lenqeeqqissan luusa ma’nnaakkaan maabaras maanana maao

maarrata maashata maaxamii maccat maccooccaannus madu makkeeii malaakkaa malaltan

malatt maleesiseemmada manchi mannaakkaachch maranoba’a mashka’a mataqqat

maxaaffa maxammo meemmaaraantas meexxoomataa meguta mereeri meseleet mexxita

midanoo miine miinjaakkaan minaadabi mini misili mooshshaqqi muramanseei

98

naqaashshooman oIayyoou oddaqqian oli onteet onxane oodami oogattaau ororreesu qaada

qaaggishshata qaanqaakkata qaarsi qachchooneet qalamuhaa qanso qasanseei qaxi qegi

qeraa’rrimana qexeesaanchisi qiraareen qixxammeeii qocichchuu qomesira qoobaakka

qooccano qoodamaanni qoorsua qorabamanua qormiin qoxara quImmai quuxaakkata

raadoonaantas rehi reshaan rosaanchut saaliichch saamuhuu sadaakka salakkit saqalu

saseenta satatteemant sawwaitti seeli seeraamua sereegg serekketii sha’llu shalana

shallaggin shashimata shee sholeemma shoohamanua shoolita shoosaawwaakkata shu

shuunnantaau sila’antaada sirisi sohinnta sou su’mmahaa ta’mmaanniichcheet

taaphanneena tamissaa tashsha’anna teeltoou teeppi televizhiinaan tishshiteehaarra

tochchaanchoonin toliin tophpheechch toqqansiinii toroshammeeu tunsuta

tuuteeccanseemmada ubiin usheexxanoba’a uullataa waabbaakka waajjeen waalano

wiimaa wixi wogi wolii wollaakkataa womaashsha woqqaan worro woyyaaggii wozana

xa’mmaakkaa xaaccu xaawaataaga xaaxxisu xaazz xabbaii xalla xaphphattaan xaqqu xeata

xeffittaakkatanneehaa xinkuta xishshimaan xooffoogan xophphi xufi xummiininbala

xuudamanora yaa’aakkat yaadii yaaniin yaarano yamee yoo you zabaakkata zahicciin

zahisoon zakkaanchoonin ziiqut zirranno

99

APPENDIX V: KAMBAATA WORDS AFTER STEMMING

Stemmed words taken from test set two are given below. The words contain only unique

stems of the output of the test set two (TS2) of the improved stemmer.

aag aal aaqq aass aaz abb af afoo afuuIll agg ag agud alaphph al amaa’ll amaar am amma’n

amman nibaab ang ankar annann ann asi’m ass awwan azut azzaz baa’yyaat baab baad baas

bai bakkan barcum barg barr bar beeh beet biix bir bizz bokk bon boorad booyyees boq

bull busha caakk calcal ceem cu’mm cumuq daaddaab daddaab daftar dag dan dand daqq

dib digiir dikkis diraam door dooi dull duuh duun eebb eged enkeen era ereer etar faar fad

fai fann fanqashsh farr fidal fint foolooc ful fushsh ga’aa gaan gaazeex gabba gaffar gag

gajaaj galax gal gann gardab gar gashsh geemmar gi’iiz gidaan giphph gob gons gooc goof

gool goon gorr got haabdool haasaaw hab had hag hagar hal ham hamm hanqaf hansaw

haraar has haww hayyut hei heel hees hegeeg hezzeet hig higg hiir hinc hiq hir hogob hoog

hoolam hoolch hor hos hoss hujat hund hun it ih iill iitt il ill injiij inkiil ins jaal jaat kaa’ll

kaam kaard kaas kajjeel kal kam kar kas keeIm keen kei keu kichchei kifil kirr kod kul

kulis kull kuush laaga laal lag lallab lam leh lei lenqeeq luus ma’n maabar maan maai maar

maash maax macc maccooc mad makk malah malal mal malees manch mann mar mashk

mat xaaf max meemaar meex meg mereer mesel mexx mid miin miinj minaadab min misil

mooshsh mur naqqas oi oddis oli ont onxan ood oogat oror qaad qaag qaanq qaar qachch

qal qan qas qax qeg qeraa’r qexees qiraar qixx qoc qom qoob qooc qood qoor qorab qorm

qoxar quIm quux raadoon reh resh ros saal saam sad salak saqal sas satat saww seel seer

sereeg serekket sha’l shal shallag shash shi shol shooh shool shoosaaw shu shuun silai sir

soh sou su’m ta’m taaphan tam tashsh teel teep televizhiin tishsh tochch tol toll tophph toqq

torosh tuns tuuteecc ub usheex uul waab waaj waal wiim wix wog wol woll wom woqq

wor woyy woz xa’mm xaaz xah xaax xaazz xabb xall xaphph xaqq xei xeff xink xishsh

xoof xophph xuf xumm xuud yaai yaad yi yaar yamaa yoo you zab zahic zah zakk ziiq zirr

100

APPENDIX VI: KAMBAATA VERB INFLECTION EXAMPLE

TABLE VI-1: KAMBAATA VERB INFLECTION FOR A VERB “KUL” ‘TELL’

Person
Perfective

PVO

Perfective

PVE

Negation of

PVE

SS

Purposive

DS

Purposive

Imperfective

(IPV)
Jussive

Conjunct

forms

Progressive

(PROG)

1SG Kul-l-oom(m) Kul-l-eem(m) Kul-imba’a
Kul-o-ta /Kul-

ii(ha)/
Kul-un-ta Kul-aam(m) Kul- Ø Kul-l Kul-ayyoom(m)

2SG Kul-toont Kul-teent Kul-timba’a Kul-t-ota Kul-t-un-ta Kul-taant Kul- Ø Kul-t Kul-tayyoont

3M Kul-l-o Kul-l-ee(u) Kul-imba’a Kul-o-ta Kul-un-ta Kul-ano Kul-un Kul-l Kul-ayyoo(u)

3F/PL Kul-too(u) Kul-tee(u) Kul-timba’a Kul-t-ota Kul-t-un-ta Kul-taau Kul-tun Kul-t Kul-tayyoo(u)

1PL Kun-noom(m) Kun-neem(m)
Kun-n-

imba’a
Kun-n-ota Kun-n-un-ta Kun-naam(m)

Kun-nun

Kunn-o
Kun-n Kun-nayyoom(m)

2P/HON Kul-teenta(a/u/)
Kul-teen-

imba’a
Kul-teen-o-ta

Kul-teen-un-

ta
Kul-teenanta Kul-l-e Kul-teen Kul-teenayyoonta

3HON Kul-eemma(a/u/)
Kul-een-

imba’a
Kul-een-o-ta Kul-een-un-ta Kul-eenno Kul-een-un Kul-een Kul-eenayyoomma

101

APPENDIX VII: SAMPLE WORD STEM AND ITS VARIOUS WORD

FORMS

The following 207 distinct words are variations that are formed by inflection and derivation

of a verb stem “kul” (tell). This list is one typical scenario to see how Kambaata language

has complex morphology. However, the following is not the complete list of word

formation for the verb stem “kul”.

kulaanchchii

kulaanchchiihaa

kulaanchi

kulaanchiin

kulaanchina

kulaanchisi

kulaanchisibiinku

kulaanchisina

kulaanchisitannee

kulaanchisitanneeha

kulaanchisitanneehaa

kulaanchitannee

kulaanchitanneeha

kulaanchitanneehaa

kulaanchoon

kulaanchu

kulaanchuhuu

kulaanchunku

kulaanchunkus

kulaanchus

kulaanchusii

kulaanchut

kulaaniichch

kulaaniichchis

kulaaniin

kulaannibii

kulaannii

kulaanniichch

kulaanniichchis

kulaanniichchisii

kulaanniichchisin

kulaanniiha

kulaanniihaa

kulaanniihaans

kulaanniihaansii

kulaannisi

kulaannisitannee

kulaannu

kulaannuha

kulaannuhaa

kulaannuhuu

kulaannunku

kulaannunkus

kulaannus

kulaannusii

kulaanoon

kulaanoontanne

kulammee

kulammeehaa

kulammeeii

kulammeeiiha

kulammeeiihaa

kulammosi

kulamumbu

kulamumbuha

kulamumbuhaa

kulan

kulaneen

kulanian

kulanians

kulaniyaan

kulaniyaans

kulano

kulanoba'a

kulanobikkii

kulanoga

kulanohannii

kulanohannitannee

kulanohannitanneeha

kulanohannitanneehaa

kulanondoo

kulanoo

kulanosiga

kulanosigu

kulanotannee

kulanotanneeha

kulanotanneehaa

kulanotanneehaat

kulanotanneehaatii

kulanteenumbutannee

kulanteenumbutanneeha

kulanteenumbutanneehaat

kulanteenumbuu

kulanteenumbuuha

kulanteenumbuuhaa

kulantoo

kulantumbu

kulantumbuta

kulantumbutaa

kulanua

kuli

kuliga

kuliichchis

kuliiha

kuliihans

kuliin

102

kull

kullanchisibii

kullee

kulleehaa

kulleei

kulleeii

kulleeiiha

kulleeiihaa

kulleeikke

kulleeikkeeraan

kulleeu

kullo

kulloga

kullogga

kulloonku

kullos

kullosi

kullosihannii

kulota

kulsiisheeikke

kulsiisheeikkeeraan

kulsiisii

kult

kultaa

kultaaga

kultaagaa

kultaahaa

kultaahaagga

kultaahaarra

kultaai

kultaara

kultaarii

kultaariiha

kultaariihaa

kultaariineet

kultaaru

kultaaruu

kultaassarii

kultaassaru

kultaatannee

kultaatanneeha

kultaatanneehaa

kultaau

kultan

kultanian

kultanians

kultaniyaan

kultaniyaans

kultee

kultee’nna

kultee’nnaachch

kultee’nnaachchii

kultee’nnaachchiis

kultee’nnaachchiisin

kulteehaa

kulteehaagga

kulteehaando

kulteehaandoo

kulteeikkeeraan

kulteeindo

kulteeindoo

kulteent

kulteenumbuunka

kulteenunta

kultii

kultoo

kultoobaan

kultooga

kultoogaa

kultoohaagga

kultoohaarra

kultoohanneen

kultoohanniin

kultooi

kultooii

kultooiiha

kultooiihaa

kultooiihu

kultooiihuu

kultooiinku

kultoont

kultoora

kultoorii

kultooriiha

kultooriihaa

kultooriineet

kultooru

kultooruu

kultoossarii

kultoossaru

kultootannee

kultootanneeha

kultootanneehaa

kultoou

kultota

kultun

kultuntta

kultunttaa

kultunttaat

kulu

kuluhuu

kulumbusi

kulumbusii

kulumbussa

kulunta

kunn

kunnaamm

kunnaammii

kunnaneen

kunnota

kunnun

103

DECLARATION

I, the undersigned, declare that this thesis is my original work, prepared under the guidance

of Dr. Solomon Teferra. All sources of materials used for the thesis have been duly

acknowledged. I further confirm that the thesis has not been submitted either in part or in

full to any other higher learning institution for the purpose of earning any degree.

Jonathan Samuel ________________

Name Signature

St. Mary’s University, Addis Ababa March, 2018

104

ENDORSEMENT

This thesis has been submitted to St. Mary's University, School of Graduate Studies for

examination with my approval as a university advisor.

Solomon Teferra (PhD) ________________

Advisor Signature

St. Mary’s University, Addis Ababa March, 2018

